SortedWordCount源代码以及过程分析

原创 2016年06月01日 05:43:25

SortedWordCount源代码以及过程分析

运行截图:
![]
![
代码逻辑:

Sort.java

//Sort.java--目的key从大到小排序

package com;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class Sort{
    public static class SimpleMapper 
         extends Mapper<IntWritable,Text,RevertKey,Text>{
        public void map(IntWritable key,Text value,Context context/*获取的key为单词数量,value为单词内容*/
                ) throws IOException, InterruptedException{
            RevertKey newkey =new RevertKey(key);/*目的key从大到小排序,hadoop中IntWritable默认从小到大排序,map的输出key作为一个自定义的key命名RevertKey,RevertKey希望实现从大到小的排序*/
            context.write(newkey,value);
        }
    }

    public static class SimpleReducer 
    extends Reducer<RevertKey,Text,Text,IntWritable>{
    public void reduce(RevertKey key,Iterable<Text>values,
            Context context
            ) throws IOException, InterruptedException{
        for (Text val : values) {//value迭代器迭代
        context.write(val,key.getKey());//单词内容,次数
    }
}
}
/*  
public static class SimpleReducer
         extends Reducer<RevertKey,Text,Text,IntWritable>{
        public void reduce(RevertKey key,Iterable<Text> values,
                Context context
                ) throws IOException,InterruptedException{
            for(Text val : values){
                context.write(val,key.getKey());
            }
        }
    }
*/
    public static class RevertKey 
         implements WritableComparable<RevertKey>{

        private IntWritable key;//真实的成员KEY
        public RevertKey(){
            key = new IntWritable();
        }
        public RevertKey(IntWritable key){
            this.key = key;
        }
        public IntWritable getKey(){
            return key;
        }
        @Override
        public int compareTo(RevertKey other) {
            return -key.compareTo(other.getKey());//完成从大到小的排序,设置compareTo方法的一个反序前面加‘-’
        }
        @Override
        public void readFields(DataInput in) throws IOException {
            key.readFields(in);
        }
        @Override
        public void write(DataOutput out) throws IOException {
            key.write(out);
        }

    }
    public static void main(String[] args) throws Exception {


        Configuration conf = new Configuration();
        String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
        //这里需要配置参数即输入和输出的HDFS的文件路径
        if (otherArgs.length != 2) {
          System.err.println("Usage: wordcount <in> <out>");
          System.exit(2);
        }
       // JobConf conf1 = new JobConf(WordCount.class);
        Job job = new Job(conf, "Sort");//Job(Configuration conf, String jobName) 设置job名称和
        job.setJarByClass(Sort.class);
        job.setMapperClass(SimpleMapper.class); //为job设置Mapper类 

        job.setReducerClass(SimpleReducer.class); //为job设置Reduce类 

        job.setMapOutputKeyClass(RevertKey.class);  
        job.setMapOutputValueClass(Text.class); 

        job.setOutputKeyClass(Text.class);        //设置输出key的类型
        job.setOutputValueClass(IntWritable.class);//  设置输出value的类型

        job.setInputFormatClass(SequenceFileInputFormat.class);
        FileInputFormat.addInputPath(job, new Path(otherArgs[0])); //为map-reduce任务设置InputFormat实现类   设置输入路径

        FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));//为map-reduce任务设置OutputFormat实现类  设置输出路径
        System.exit(job.waitForCompletion(true) ? 0 : 1);
      }
}

WordCount.java

//WordCount.java,最终结果为单词数量和单词内容形成一个映射
package com;

import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

public class WordCount {

     /** 
     * MapReduceBase类:实现了Mapper和Reducer接口的基类(其中的方法只是实现接口,而未作任何事情) 
     * Mapper接口: 
     * WritableComparable接口:实现WritableComparable的类可以相互比较。所有被用作key的类应该实现此接口。 
     * Reporter 则可用于报告整个应用的运行进度,本例中未使用。  
     *  
     */  
  public static class TokenizerMapper 
       extends Mapper<Object, Text, Text, IntWritable>{

      /** 
       * LongWritable, IntWritable, Text 均是 Hadoop 中实现的用于封装 Java 数据类型的类,这些类实现了WritableComparable接口, 
       * 都能够被串行化从而便于在分布式环境中进行数据交换,你可以将它们分别视为long,int,String 的替代品。 
       */ 
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();//Text 实现了BinaryComparable类可以作为key值


    /** 
     * Mapper接口中的map方法: 
     * void map(K1 key, V1 value, OutputCollector<K2,V2> output, Reporter reporter) 
     * 映射一个单个的输入k/v对到一个中间的k/v对 
     * 输出对不需要和输入对是相同的类型,输入对可以映射到0个或多个输出对。 
     * OutputCollector接口:收集Mapper和Reducer输出的<k,v>对。 
     * OutputCollector接口的collect(k, v)方法:增加一个(k,v)对到output 
     */  

    public void map(Object key, Text value, Context context) throws IOException, 
    InterruptedException {
      StringTokenizer itr = new StringTokenizer(value.toString());//得到什么值
      //System.out.println("value什么东西 : "+value.toString());
      //System.out.println("key什么东西 : "+key.toString());

      while (itr.hasMoreTokens()) {
        word.set(itr.nextToken());

        context.write(word, one);
      }
    }
  }

  public static class IntSumReducer extends Reducer<Text,IntWritable,IntWritable,Text> {/*数据类型声明设置*/
    private IntWritable result = new IntWritable();
    public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, 
    InterruptedException {
      int sum = 0;
      for (IntWritable val : values) {
        sum += val.get();
      }
      result.set(sum);
      context.write(result, key);
    }
  }

  public static class IntSumCombiner/*Combiner设置<不利于查看中间数据>,减少mapreduce中间的数据量,减少reduce拖取数据量,加快任务的性能*/
            extends Reducer<Text,IntWritable,Text,IntWritable>{/*输入数据和输出数据类型必须一致*/
      private IntWritable result = new IntWritable();
      public void reduce(Text key,Iterable<IntWritable> values,
              Context context
              )throws IOException,InterruptedException{
          int sum=0;
          for (IntWritable val : values){
              sum += val.get();
          }
          result.set(sum);
          context.write(key,result);
      }
  }
  public static void main(String[] args) throws Exception {

      /** 
       * JobConf:map/reduce的job配置类,向hadoop框架描述map-reduce执行的工作 
       * 构造方法:JobConf()、JobConf(Class exampleClass)、JobConf(Configuration conf)等 
       */  

    Configuration conf = new Configuration();
    String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
    //这里需要配置参数即输入和输出的HDFS的文件路径
    if (otherArgs.length != 2) {
      System.err.println("Usage: wordcount <in> <out>");
      System.exit(2);
    }
   // JobConf conf1 = new JobConf(WordCount.class);
    Job job = new Job(conf, "word count");//Job(Configuration conf, String jobName) 设置job名称和
    job.setJarByClass(WordCount.class);
    job.setMapperClass(TokenizerMapper.class); //为job设置Mapper类 
    job.setCombinerClass(IntSumCombiner.class); //为job设置Combiner类  
    job.setReducerClass(IntSumReducer.class); //为job设置Reduce类 

    job.setMapOutputKeyClass(Text.class);  
    job.setMapOutputValueClass(IntWritable.class); /*声明map<key,value>类型,如果不声明就是和最终输出是一致的*/

    job.setOutputKeyClass(IntWritable.class);        //设置输出key的类型 ; 将原始的wordcount的最终输出的数据格式<key,value>的数据类型呼唤,做排序的输入
    job.setOutputValueClass(Text.class);//  设置输出value的类型

    job.setOutputFormatClass(SequenceFileOutputFormat.class);//方便第二个任务做输入,SequenceFile是Hadoop API提供的一种二进制文件支持。这种二进制文件直接将<key,value>对序列化到文件中,一般对小文件可以使用这种文件合并,即将文件名作为key,文件内容作为value序列化到大文件中。
    FileInputFormat.addInputPath(job, new Path(otherArgs[0])); //为map-reduce任务设置InputFormat实现类   设置输入路径

    FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));//为map-reduce任务设置OutputFormat实现类  设置输出路径
    System.exit(job.waitForCompletion(true) ? 0 : 1);
  }
}

//shuffle error是计数器输出
可查看下hadoop的源代码,我看的是cdh版本的hadoop源代码hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-core/src/main/java/org/apache/hadoop/mapreduce/task/reduce/Fetcher.java

这些系统自带的计数器是在配置文件中配置的,可以在以下文件中找到。
./hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-core/src/main/resources/org/apache/hadoop/mapreduce/lib/output/FileOutputFormatCounter.properties

./hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-core/src/main/resources/org/apache/hadoop/mapreduce/lib/input/FileInputFormatCounter.properties

./hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-core/src/main/resources/org/apache/hadoop/mapreduce/TaskCounter.properties

./hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-core/src/main/resources/org/apache/hadoop/mapreduce/JobCounter.properties

./hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-core/src/main/resources/org/apache/hadoop/mapreduce/FileSystemCounter.properties

//另外请注意,SequenceFileOutputFormat,输出的内容是不可读的!

//Shuffle Error统计在Shuffle中的错误情况,我这输出表示任务map到reduce之间没什么错误。

flase,是指当前的mapreduce不是的uber mode的。 uber mode是mapreduce 2.x中一个特殊的mapreduce执行方式,它将map/reduce任务放到ApplicationMaster中执行,而不是分布式执行。这用于执行数据集很小的任务或者测试任务时使用。

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/superman_xxx/article/details/51553123

[pySpark][note]Word Count Lab: Building a word count application

+ Word Count Lab: Building a word count applicationThis lab will build on the techniques covered in ...
  • u013805817
  • u013805817
  • 2016-09-07 20:34:19
  • 1072

Spark第一个程序开发 wordcount

这里介绍了程序运行在本地模式和Standalone模式两种方式package com.spark.appimport org.apache.spark.{SparkContext, SparkConf...
  • u010110208
  • u010110208
  • 2016-07-24 12:17:08
  • 11548

sudo源码分析(一)

首先申明,sudo命令虽然很常用,不过以前使用的时候从来都不带任何参数,后面直接跟着想要得到root权限的命令。知道最近研究了下sudo源码后才知道sudo居然也有这么多参数。当时看源码时也被它处理各...
  • hekailing
  • hekailing
  • 2015-09-09 15:43:11
  • 923

U-BOOT启动过程分析

  • 2009年06月17日 15:16
  • 536KB
  • 下载

【word count 程序】 通过 java8实现

hadoop的入门程序,java8也能实现 txt统计单词数量程序@Test public void fileWordCount() throws IOException { //特殊文件需...
  • xzplayboy
  • xzplayboy
  • 2017-05-16 14:41:01
  • 611

scala实现wordcount

这里给出两种方式,供初学者参考。 方式一:val lines = List("show me the money", "show me the meaning of being lonely", "...
  • hohojiang
  • hohojiang
  • 2016-09-06 13:12:31
  • 562

arm_linux内核启动过程分析

  • 2010年08月08日 00:36
  • 308KB
  • 下载

探索 OpenStack 之(11):cinder-api Service 启动过程分析 以及 WSGI / Paste deploy / Router 等介绍

转自:探索 OpenStack 之(11):cinder-api Service 启动过程分析 以及 WSGI / Paste deploy / Router 等介绍       Open...
  • jmppok
  • jmppok
  • 2015-08-17 14:11:33
  • 845

第一个hadoop程序:WordCount

在windows8.1+eclipse编写hadoop程序,并尝试运行,步骤如下: 1.在Eclipse开发环境中创建JAVA工程 双击桌面上的Eclipse的快捷方式。首先选择菜单“Fi...
  • hexiaofen1996
  • hexiaofen1996
  • 2017-03-30 19:26:30
  • 195

Hadoop之——WorldCount统计实例

最近,有很多想做大数据的同学发来私信,想请我这位在大数据领域跌打滚爬了多年的老鸟写一些大数据分析的文章,好作为这些同学学习大数据分析从入门到上手再到精通的参考教程,作为一个大数据分析领域的老鸟,很高兴...
  • l1028386804
  • l1028386804
  • 2017-10-14 23:54:24
  • 773
收藏助手
不良信息举报
您举报文章:SortedWordCount源代码以及过程分析
举报原因:
原因补充:

(最多只允许输入30个字)