时序数据

【问题一】 如何对date_range进行批量加帧操作或对某一时间段加大时间戳密度?

批量加帧操作 pd.date_range(start='2020/1/1',periods=x,freq='D')
某一时间段加大时间戳密度 pd.date_range(start='2020/1/1',end='2020/1/10',periods=x)

【问题二】 如何批量增加TimeStamp的精度?

Timestamp的精度远远不止day,可以最小到纳秒ns pd.to_datetime('2020/1/1 00:00:00.123456789')

【问题三】 对于超出处理时间的时间点,是否真的完全没有处理方法?

看要怎么处理,可以变换一下时间区间?

【问题四】 给定一组非连续的日期,怎么快速找出位于其最大日期和最小日期之间,且没有出现在该组日期中的日期?

对非连续日期进行排序,看排序后的结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值