sup小鱼
码龄5年
关注
提问 私信
  • 博客:51,252
    51,252
    总访问量
  • 16
    原创
  • 1,967,577
    排名
  • 2,306
    粉丝
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2019-06-19
博客简介:

weixin_45275599的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    4
    当前总分
    689
    当月
    9
个人成就
  • 获得88次点赞
  • 内容获得43次评论
  • 获得215次收藏
  • 代码片获得5,697次分享
创作历程
  • 17篇
    2023年
成就勋章
TA的专栏
  • python
    1篇
  • jupyter
    1篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

185人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

波特率详解

波特率在数字信号通信中使用时,它描述了数字信号传输的速率,即在单位时间内传输的二进制位的数量。波特率通常用比特每秒(bps或bit/s)来表示,它是一个衡量数字信号传输速度的重要指标。在数字通信中,。因此,波特率是数字信号传输速度的重要指标之一。模拟信号的波特率是指模拟信号每秒传输的波形数,也就是单位时间内传输的载波的数目。它和数字信号的波特率都是衡量信号传输速率的单位,只不过数字信号的波特率是以比特为单位,而模拟信号的波特率是以波形为单位。
原创
发布博客 2023.12.19 ·
807 阅读 ·
8 点赞 ·
1 评论 ·
9 收藏

频谱/功率谱/功率谱密度

频谱的平方模(模的平方),即振幅的平方(这种情况下通常值都会很小,为了更好展示动态范围,可能选择使用对数尺度(以分贝为单位))功率谱的计算需要信号先做自相关,然后再进行FFT运算。频谱图的纵坐标就是每个频率分量的振幅。计算功率谱的一种常见方法是取。
原创
发布博客 2023.12.17 ·
1012 阅读 ·
9 点赞 ·
1 评论 ·
8 收藏

前馈和反馈

前馈特点:速度快,不需要检测输出量,需要系统模型,模型不精确的时候结果也不精确。反馈特点:检测输出量并且和预想值进行对比,可以不需要系统模型,速度比前馈慢。结果完完全全是预想值。前馈控制需要模型。反馈控制可以不需要模型。前馈控制,需要得到一个输出的时候,输入信号可以被事先推算出来,这样给了输入信号之后,输出信号就是想要的值。反馈控制不需要事先知道输入信号。它只检测输出信号。当输出信号低于预期值时,反馈系统会改变输入量,使得输出量增加。前馈控制系统在受控部位的活动发生偏差之前就发出控制指令了。反馈控制系统感受
转载
发布博客 2023.12.07 ·
602 阅读 ·
1 点赞 ·
1 评论 ·
2 收藏

机器学习易混淆点(持续更新)

1、KPCA与PCA的主要区别是引入了核函数,KPCA可以处理非线性数据,而PCA只能处理线性问题。
原创
发布博客 2023.10.26 ·
72 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

吃透机器学习经典算法——集成学习与随机森林

Stacking是一种更高级别的集成学习方法,它使用多个不同类型的模型来预测输出变量。Stacking首先使用多个基本模型对数据进行拟合,然后使用另一个元模型来组合基本模型的预测结果。Boosting是另一种集成学习方法,它通过训练一系列依赖于前一个模型的弱学习器来提高性能。Boosting算法通过对训练数据进行加权来训练每个模型,并根据前一个模型的错误来调整权重。随机森林是一种集成学习方法,它是由多个决策树组成的模型。在随机森林中,每个决策树都是基于随机抽样的数据集和特征集构建的。
原创
发布博客 2023.10.25 ·
123 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

参数模型与非参数模型

参数模型:训练前会预设一部分参数,如线性模型会假设数据是线性的。非参数模型:训练前没有确定的参数。
原创
发布博客 2023.10.25 ·
272 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

DBSCAN算法

快速视频讲解:动画机器学习6/聚类算法DBSCAN/史上最简单的三分钟讲解视频/_哔哩哔哩_bilibili仔细视频讲解:基于密度的聚类 DBSCAN 解释与实例计算_哔哩哔哩_bilibili
原创
发布博客 2023.10.25 ·
53 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

吃透机器学习经典算法——决策树

决策树中一个重要概念:基尼不纯度:基尼不纯度(Gini Impurity)是决策树分类中的一个度量(判断是否需要继续分裂的重要指标,另一个指标为最大深度),用于评估一个数据集的混乱程度。值范围为0到0.5,0表示完全纯净(所有样本同类),0.5表示最不纯净(每个类别等概率)【决策树是否继续分割的两大指标:1、是否达到最大深度 2、是否能找到可减少基尼不纯度的分割。
原创
发布博客 2023.10.20 ·
114 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

时序数据易混淆点(持续更新)

1、时间序列预测的特征通常包括:趋势:时间序列长期的平均变化趋势,可以是线性的,也可以是非线性的。季节性:季节性是指在相同时间周期内不断重复出现的周期性变化。周期性:数据中不固定周期的波动。它可以是固定的,也可以是不规则的。周期性通常表现为往复波动,但这些波动没有固定的周期或振幅。随机或噪音(Noise):由于各种原因导致不可预测的波动2、数据分解成imf和残差,其中的残差与随机或噪声不一样,残差与残差可能包含噪音,但也可能包含未被捕获的有用信息或模式。噪音则是纯粹的随机波动,不含有用信息。
原创
发布博客 2023.10.16 ·
90 阅读 ·
1 点赞 ·
1 评论 ·
0 收藏

单步预测与多步预测

单步预测:输出为单个值 多步预测:输出为多个值单步预测与多步预测中的“步”指的是输出值的个数,而非滑动窗口移动步数 滑动窗口大小只决定了输入的元素数量,输出数量可以是任意值,取决于你的预测需求
原创
发布博客 2023.10.14 ·
1181 阅读 ·
0 点赞 ·
2 评论 ·
2 收藏

三图看懂LSTM、RNN、普通神经网络区别

普通神经网络输出只有输入决定。前一状态隐藏层中的信息h。前一状态隐藏层中的信息h。
原创
发布博客 2023.10.13 ·
942 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

时序数据分类——基于tslearn库下不同尺度的k-means算法

K-means聚类是一种划分方法,旨在将n个观察值划分为k个聚类,每个聚类的中心是该聚类中所有观察值的均值。通过这种方式,我们可以发现时间序列数据中的不同模式。tslearntslearn是一个用于时间序列机器学习的Python库。它提供了多种用于时间序列聚类和分类的工具和算法。
原创
发布博客 2023.10.09 ·
2356 阅读 ·
1 点赞 ·
1 评论 ·
20 收藏

时序分类算法——SAX-VSM

SAX-VSM(Symbolic Aggregate Approximation Vector Space Model)是一种用于时间序列分类(TSC)的方法。VSM用于将SAX符号序列视为“文本文档”,并进行TF-IDF(Term Frequency-Inverse Document Frequency)转换。- 计算C([0.5, 0.3, 0.2])与A和B的TF-IDF向量的相似度。通过计算TF-IDF向量间的余弦相似度或其他度量来进行分类。- 假设与A的相似度更高,因此C被分类为与A同一类。
原创
发布博客 2023.10.08 ·
302 阅读 ·
0 点赞 ·
1 评论 ·
2 收藏

快速学pytorch之评估模式:model.eval()

model.eval()是PyTorch中的一个方法,用于将模型设置为评估模式(evaluation mode)。一般情况下,当我们完成模型的训练并准备对其进行评估、测试或推断时,会调用该方法。
原创
发布博客 2023.07.03 ·
10147 阅读 ·
16 点赞 ·
0 评论 ·
50 收藏

ConnectionError: (‘Connection aborted.‘, ConnectionResetError(10054, ‘远程主机强迫关闭了一个现有的连接。‘, None, 1005

更换。
原创
发布博客 2023.07.02 ·
12152 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

jupyter notebook报错:500:Internal Server Error的解决方法

Internal Server Error 通常是由于 Jupyter Notebook 服务器发生了内部错误导致的。这可能是由于多种原因引起的,如软件包冲突、配置错误、资源耗尽等等,大多数情况下是由于。是 Jupyter Notebook 的一个重要组件,负责将 Jupyter Notebook 转换为其他格式(如 HTML、PDF 等)nbconvert的兼容性或包。导致的,而nbconvert。
原创
发布博客 2023.07.02 ·
19515 阅读 ·
48 点赞 ·
30 评论 ·
114 收藏

启动jupyter notebook报错:ImportError: cannot import name ‘escape‘ from ‘markupsafe‘ 最简单解决方法/ 安装jupyter

一步搞定jupyter打开异常问题
原创
发布博客 2023.07.02 ·
1433 阅读 ·
1 点赞 ·
1 评论 ·
0 收藏
加载更多