图像平滑、是用于消除噪音,降低细节层次,模糊图像的一种处理技术。
由于图像中,距离被处理的对象越近,其对该像素的影响也越大,所以图形平滑时,多采用加权平均的方法。
如采用加权平均模板为:
即用矩阵对图像进行卷积,得到平滑后的图像。
高斯模糊也属于加权平均法的一种模板,只是他采用了正太分布来作为模板,进行像素映射工作。
一维高斯:
二维高斯函数:
由于高斯函数具有线性可分的特性,所以高斯模糊即可以由一维高斯函数获得,也可由二维高斯函数获得。
其中,一维的方法为:首先沿横向对图像进行处理,然后在上一处理的基础上沿着纵向进行处理。
(http://zh.wikipedia.org/wiki/%E9%AB%98%E6%96%AF%E6%A8%A1%E7%B3%8A)
高斯矩阵示例
这是一个计算 σ = 0.84089642 的高斯分布生成的示例矩阵。注意中心元素 (4,4) 处有最大值,随着距离中心越远数值对称地减小。
0.00000067 | 0.00002292 | 0.00019117 | 0.00038771 | 0.00019117 | 0.00002292 | 0.00000067 |
0.00002292 | 0.00078633 | 0.00655965 | 0.01330373 | 0.00655965 | 0.00078633 | 0.00002292 |
0.00019117 | 0.00655965 | 0.05472157 | 0.11098164 | 0.05472157 | 0.00655965 | 0.00019117 |
0.00038771 | 0.01330373 | 0.11098164 | 0.22508352 | 0.11098164 | 0.01330373 | 0.00038771 |
0.00019117 | 0.00655965 | 0.05472157 | 0.11098164 | 0.05472157 | 0.00655965 | 0.00019117 |
0.00002292 | 0.00078633 | 0.00655965 | 0.01330373 | 0.00655965 | 0.00078633 | 0.00002292 |
0.00000067 | 0.00002292 | 0.00019117 | 0.00038771 | 0.00019117 | 0.00002292 | 0.00000067 |
变化前图像:
高斯模糊后:
代码: