RAG 数据集准备篇:用三大 Agents 优化评估流程

本文是关于如何优化 RAG 技术的一系列文章之一。在之前的文章中,我们已经深入探讨了如何在 Chunking、Embedding 以及评估指标设计等环节优化 RAG 性能。这篇文章将重点关注如何准备评估 RAG 性能所需的数据集,为后续优化打下坚实基础。

1. 优化 RAG 不是“炼丹”,需要系统的方法

当涉及到如何优化 RAG(Retrieval-Augmented Generation)性能时,许多人往往采取“试错”的方法:“我尝试了一个新模块,问了几个问题,答案看起来还行…”。这样的定性评估方式虽然直观,但很难得出可靠的改进结论。

优化 RAG 性能需要采用科学实验的方式。这意味着我们必须设计量化的评估指标,并准备高质量的评估数据集。通过结构化的实验和评估方法,我们才能明确什么样的调整会真正提升性能。

在这里插入图片描述

2. 结构化评估 RAG 的性能

RAG 系统的性能评估可以从以下两个主要方面进行:

  1. 检索评估(Retrieval Evaluation): 检索的段落是否相关?
  2. 生成评估(Generation Evaluation): 模型生成的答案是否恰当?

对于端到端的评估,我们通常关注以下四类指标:

  • Groundedness(可靠性): 检索评估中的关键指标,评估检索的段落是否为生成的答案提供了可靠支持,避免幻觉(hallucinations)或无关信息。这是生成评估的基础。
  • Completeness(完整性): 生成评估的核心指标,用于评估模型的回答是否全面覆盖了用户问题的所有方面,同时间接反映了检索阶段的信息充分性。
  • Utilization(利用率): 连接检索和生成的桥梁指标,用来评估检索到的信息是否被有效利用。如果利用率低,可能意味着检索到的段落与问题无关,或者模型未充分使用这些段落。
  • Relevance(相关性): 检索评估的直接反映,衡量检索到的段落与用户问题之间的相关性,同时也会影响生成评估的整体表现。

这些指标需要基于高质量的测试样本和严格的评估流程。

3. 使用 Agents 完成 RAG 性能基准测试

在开始具体流程前,我们需要了解三个代理(Agents)的协作关系:

  1. 测试样本代理(Test Sample Agent): 用于生成和准备测试数据,这些数据构成了评估系统的基础。
  2. 样本质量评价代理(Critique Agent): 对测试样本进行质量审核,确保最终用于评估的数据具备高准确性和清晰性。
  3. 评估代理(Evaluation Agent): 负责根据设计的指标对系统性能进行量化评估。这些评估指标覆盖了检索和生成的多个层面。

通过这三种代理的协作,可以建立一个系统化的性能基准测试流程,帮助开发者深入理解和优化 RAG 系统。

在这里插入图片描述

3.1 生成测试样本

为了评估 RAG

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

surfirst

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值