揭开RAG系统的评估面纱:4 大指标助你提升输出质量

之前笔者已经介绍了如何通过 Chunking 和 Embedding 来优化 RAG 系统。今天我们来聊聊评估 RAG 系统性能的指标体系。我们的重点会放在评估大模型的输出的指标上。

在优化基于检索增强生成(Retrieval-Augmented Generation, RAG)的系统时,明确性能评估方法是关键的一步。本篇文章将围绕 RAG 系统的评估指标展开,重点探讨如何通过科学评估优化系统性能。

1. RAG 的基本组成部分

RAG 系统通常由两个主要阶段组成:

1.1 数据摄取(Data Ingestion):

  • 将结构化或非结构化数据转化为适合向量数据库的形式。
  • 数据准备的典型步骤包括清洗、分词、嵌入生成等。
  • 举例:对新闻文章进行分块处理并生成嵌入以便后续检索。

1.2 数据查询(Data Querying):

  • 检索(Retrieval): 从向量数据库中提取与用户查询相关的内容。
  • 合成(Synthesis): 将检索内容与用户查询结合,通过大模型生成最终回答。
  • 应用场景: 包括客户支持、企业知识问答系统等。
    RAG 系统结构
2. 如何评估 RAG 的性能

优化 RAG 系统的关键

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

surfirst

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值