ICLR 2025 | 时空数据(Spatial-Temporal)高分论文总结

ICLR2025已经结束了讨论阶段,进入了meta-review阶段,分数应该不会有太大的变化了,本文总结了其中**时空数据(Spatial-Temporal)**高分的论文。如有疏漏,欢迎大家补充。

挑选原则:均分要大于等于6(≥6,即使有3,但是有8或者更高的分拉回来也算)

时空数据Topic:时空预测,轨迹生成,LLM以及基础模型(还有KAN和Mamba各一篇)等内容。总计10

  1. WardropNet: Traffic Flow Predictions via Equilibrium-Augmented Learning
  2. CityBench: Evaluating the Capabilities of Large Language Models for Urban Tasks
  3. Expand and Compress: Exploring Tuning Principles for Continual Spatio-Temporal Graph Forecasting
  4. Learning Spatiotemporal Dynamical Systems from Point Process Observations
  5. High-Dynamic Radar Sequence Prediction for Weather Nowcasting Using Spatiotemporal Coherent Gaussian Representation
  6. PIMRL: Physics-Informed Multi-Scale Recurrent Learning for Spatiotemporal Prediction
  7. STOP! A Out-of-Distribution Processor with Robust Spatiotemporal Interaction
  8. Deep Random Features for Scalable Interpolation of Spatiotemporal Data
  9. Does Vector Quantization Fail in Spatio-Temporal Forecasting? Exploring a Differentiable Sparse Soft-Vector Quantization Approach
  10. DiffMove: Human Trajectory Recovery via Conditional Diffusion Model

🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅在这里插入图片描述

1 WardropNet: Traffic Flow Predictions via Equilibrium-Augmented Learning

链接https://openreview.net/forum?id=7FHSPd3SRE

分数8655

关键词:交通平衡

keywords: structured learning, combinatorial optimization augmented machine learning, traffic equilibrium prediction

在这里插入图片描述

2 CityBench: Evaluating the Capabilities of Large Language Models for Urban Tasks

链接https://openreview.net/forum?id=oIWN7eMhTb

分数866510

关键词:大模型评估,城市模拟

keywords:LLM,benchmark

TL; DR:We propose a simulator based global scale benchmark to evaluate the performance of large language models on various urban tasks.

在这里插入图片描述

3 Expand and Compress: Exploring Tuning Principles for Continual Spatio-Temporal Graph Forecasting

链接https://openreview.net/forum?id=FRzCIlkM7I

分数38888

关键词:持续学习,时空预测

keywords:Spatio-temporal Graph, Continual Forecasting, Tuning Principle

TL; DR:We introduce EAC, which follows the two fundamental tuning principle and learns prompt parameters pool only through expand and compress, simply, effectively and efficiently solving the continual spatio-temporal graph forecasting problem.

EAC

4 Learning Spatiotemporal Dynamical Systems from Point Process Observations

链接https://openreview.net/forum?id=37EXtKCOkn

分数8688

关键词:点过程,时空动力学模型

keywords: dynamics, spatiotemporal, neural, PDE, ODE

在这里插入图片描述

5 High-Dynamic Radar Sequence Prediction for Weather Nowcasting Using Spatiotemporal Coherent Gaussian Representation

链接https://openreview.net/forum?id=Cjz9Xhm7sI

分数888

关键词:气象预测,Mamba

keywords: 3D Gaussian, Dynamic Reconstruction, Radar Prediction, Weather Nowcasting

在这里插入图片描述

6 PIMRL: Physics-Informed Multi-Scale Recurrent Learning for Spatiotemporal Prediction

链接https://openreview.net/forum?id=w3rbBVJ9Jg

分数8566

关键词:微分方程,时空预测

keywords:PDEs, physics encoding, data-driven modeling

TL; DR:We introduce a new multi-scale framework calling physics-informed multi-scale recurrent learning (PIMRL) framework to effectively utilize multi-scale time data.

在这里插入图片描述

7 STOP! A Out-of-Distribution Processor with Robust Spatiotemporal Interaction

链接https://openreview.net/forum?id=85WHuB5CUK

分数6666

关键词:分布外泛化,时空预测

keywords:Spatiotemporal learning; out-of-distribution learning; spatiotemporal prediction

在这里插入图片描述

8 Deep Random Features for Scalable Interpolation of Spatiotemporal Data

链接https://openreview.net/forum?id=OD1MV7vf41

分数388

关键词:地球科学,高斯过程

keywords:Random Features, Deep Gaussian Processes, Bayesian Deep Learning, Remote Sensing

TL; DR:We propose a scalable Bayesian deep learning framework to interpolate remote sensing data for increased accuracy and flexibility.

在这里插入图片描述

9 Does Vector Quantization Fail in Spatio-Temporal Forecasting? Exploring a Differentiable Sparse Soft-Vector Quantization Approach

链接https://openreview.net/forum?id=4CFVPCYfJ9

分数5856

关键词:向量量化,稀疏回归

keywords:spatio-temporal forecasting, vector quantilization, sparse regression, differentiable, soft

TL; DR:Does Vector Quantization Fail in Spatio-Temporal Forecasting? Exploring a Differentiable Sparse Soft-Vector Quantization Approach

在这里插入图片描述

10 DiffMove: Human Trajectory Recovery via Conditional Diffusion Model

链接https://openreview.net/forum?id=VRFotuGLfM

分数66865

关键词:轨迹恢复,扩散模型

keywords: Trajectory recovery, Diffusion model, Self-supervised learning, Human mobility

TL; DR:This paper presents DiffMove, a novel conditional diffusion based method for recovering human trajectories from incomplete data, outperforming existing approaches by an average of 11% in recall.

DiffMove

相关链接

ICLR 2025 OpenReview:https://openreview.net/group?id=ICLR.cc/2025/Conference#tab-active-submissions

存中…(img-L9JtbnRh-1734787584335)]

相关链接

ICLR 2025 OpenReviewhttps://openreview.net/group?id=ICLR.cc/2025/Conference#tab-active-submissions

ICLR 2025分数统计https://papercopilot.com/statistics/iclr-statistics/iclr-2025-statistics/

🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅在这里插入图片描述

### ICLR 2025会议论文格式要求 #### 论文结构与长度 提交至ICLR 2025论文应遵循特定的结构和长度规定。正文部分不得超过8页,不包括参考文献和附录。附录可以用于提供额外的信息、证明或实验细节,但不应超过合理的篇幅[^1]。 #### 排版指南 - **字体与间距**:正文字体需采用Times New Roman,字号为10pt;行距设定为单倍行距。 - **页面设置**:纸张尺寸A4大小,上下左右边距各设为1英寸(约2.54厘米)。每页顶部居中位置放置页眉,包含文章标题缩写及页码编号。 - **段落编排**:首行缩进0.5英寸(约1.27厘米),段间不留空白行。 #### 图表处理 图表应当清晰可见并具有足够的分辨率以便于阅读理解。所有图像文件推荐保存为PDF格式以保持高质量显示效果。图注位于图片下方,表格标题置于上方,并且两者均需标注清楚说明性文字[^3]。 #### 参考文献管理 引用文献时要严格按照APA风格编写,在文中提及作者姓名和出版年份作为内嵌引用形式。参考书目列表按照字母顺序排列,并列出完整的出版信息。注意检查DOI链接的有效性和准确性[^4]。 ```latex \documentclass{article} \usepackage[a4paper, margin=1in]{geometry} % 设置页面参数 \usepackage{times} % 使用 Times 字体 \begin{document} % 正文内容... \bibliographystyle{apalike} % APA 风格参考文献样式 \bibliography{references} % 引用 .bib 文件中的条目 \end{document} ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值