ICML 2024 时间序列(Time Series)论文总结【抢先版】

2024ICML(International Conference on Machine Learning,国际机器学习会议)在2024年7月21日-27日在奥地利维也纳举行

(好像ICLR24现在正在维也纳开)。

本文总结了ICML 24有关时间序列(Time Series) 的相关论文,如有疏漏,欢迎大家补充。

同时我也蹭一下Mamba的热度,放了3篇ICML接收的Mamba的文章。

时间序列Topic:预测,因果,表示学习,分类,异常检测,插补,生成,不确定性量化,基础模型,大模型

37篇:预测:1-16,表示学习,时序分析:17-22,position paper:23,24(23是大模型,24是无监督异常检测),分类:25,因果:27,28

大语言模型:16, 23

基础模型:4, 8, 37, 20

扩散模型: 33,34,36

ICML24WC

除了给ICML官方链接的几篇,其余均挂在了arXiv上或者openreview上。

🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅QRCode

时间序列

1. An Analysis of Linear Time Series Forecasting Models

作者:William Toner · Luke Darlow

关键词:线性模型、时间序列预测、功能等价性、模型比较、闭式解、线性回归、特征归一化、DLinear(AAAI23)、FITS(ICLR24 Spotlight)、RLinear、NLinear(AAAI23)

机构:爱丁堡大学(Edinburgh),华为研究中心(爱丁堡)

链接https://arxiv.org/abs//2403.14587

2. Deep Functional Factor Models: Forecasting High-Dimensional Functional Time Series via Bayesian Nonparametric Factorization

作者:Yirui Liu · Xinghao Qiao · Yulong Pei · Liying Wang

机构:伦敦政治经济学院(LSE),埃因霍芬理工大学,利物浦大学(Liverpool)

关键词:预测,贝叶斯非参数模型,可解释性

链接https://arxiv.org/abs/2305.14543

DF2M

3. Transformers with Loss Shaping Constraints for Long-Term Time Series Forecasting

作者:Ignacio Hounie · Javier Porras-Valenzuela · Alejandro Ribeiro

机构:宾夕法尼亚大学(UPenn)

关键词:长时预测,约束学习

链接https://arxiv.org/abs/2402.09373

4. Unified Training of Universal Time Series Forecasting Transformers

作者:Gerald Woo · Chenghao Liu · Akshat Kumar · Caiming Xiong · Silvio Savarese · Doyen Sahoo

机构:Salesforce,新加坡管理大学(SMU)

链接https://arxiv.org/abs/2402.02592

代码https://github.com/SalesforceAIResearch/uni2ts

关键词:大规模预训练模型(没有语言,但是够大),时序预测

MOIRAI

5. CATS: Enhancing Multivariate Time Series Forecasting by Constructing Auxiliary Time Series as Exogenous Variables

作者:Jiecheng Lu · Xu Han · Sun · Shihao Yang

机构:佐治尼亚理工学院(Gatech),Amazon

链接https://arxiv.org/abs/2403.01673

关键词:多元时序预测

CATS

6. Unlocking the Potential of Transformers in Time Series Forecasting with Sharpness-Aware Minimization and Channel-Wise Attention

作者:Romain Ilbert · Ambroise Odonnat · Vasilii Feofanov · Aladin Virmaux · Giuseppe Paolo · Themis Palpanas · Ievgen Redko

链接:华为诺亚方舟实验室,LIPADE, Paris Descartes University

关键词:预测,Transformers

链接https://arxiv.org/abs/2402.10198

代码:https://github.com/romilbert/samformer

SAMFormer

7. SIN: Selective and Interpretable Normalization for Long-Term Time Series Forecasting

作者:Lu Han · Han-Jia Ye · De-Chuan Zhan

关键词:长时预测,可解释性

链接:https://icml.cc/virtual/2024/poster/33594

8. A decoder-only foundation model for time-series forecasting

作者:Abhimanyu Das · Weihao Kong · Rajat Sen · Yichen Zhou

关键词:预测,基础模型,decoder-only

链接https://arxiv.org/abs/2310.10688

decoder-only foundation model4TSF

这篇比较火爆,三大号机器之心出过报道:

9. Efficient and Effective Time-Series Forecasting with Spiking Neural Networks

作者:Changze Lv · Yansen Wang · Dongqi Han · Xiaoqing Zheng · Xuanjing Huang · Dongsheng Li

机构:复旦大学,MSRA

关键词:预测,脉冲神经网络

链接:https://arxiv.org/abs/2402.01533

SNN4TSF

10. SparseTSF: Modeling Long-term Time Series Forecasting with 1k Parameters

作者:Shengsheng Lin · Weiwei Lin · Wentai Wu · Haojun Chen · Junjie Yang

机构:华南理工大学,鹏城实验室,暨南大学

关键词:长时预测

链接:https://arxiv.org/abs/2405.00946

代码:https://github.com/lss-1138/SparseTSF

11. Irregular Multivariate Time Series Forecasting: A Transformable Patching Graph Neural Networks Approach

作者:Weijia Zhang · Chenlong Yin · Hao Liu · Xiaofang Zhou · Hui Xiong

关键词:不规则多元时序预测

链接:https://icml.cc/virtual/2024/poster/33940

12. Learning Optimal Projection for Forecast Reconciliation of Hierarchical Time Series

作者:Asterios Tsiourvas · Wei Sun · Georgia Perakis · Pin-Yu Chen · Yada Zhu

关键词:多层级时间序列预测

链接:https://icml.cc/virtual/2024/poster/34990

13. Time-Series Forecasting for Out-of-Distribution Generalization Using Invariant Learning

作者:haoxin liu · Harshavardhan Kamarthi · Lingkai Kong · Zhiyuan Zhao · Chao Zhang · B. Aditya Prakash

关键词:预测,分布外泛化,不变学习

链接:https://icml.cc/virtual/2024/poster/34011

14. Reservoir Computing for Short High-Dimensional Time Series: an Application to SARS-CoV-2 Hospitalization Forecast

作者:Thomas Ferté · Dutartre Dan · Boris Hejblum · Romain Griffier · Vianney Jouhet · Rodolphe Thiébaut · Pierrick Legrand · Xavier Hinaut

关键词:高维时序,流行病预测

链接:https://icml.cc/virtual/2024/poster/34677

15. Revitalizing Multivariate Time Series Forecasting: Learnable Decomposition with Inter-Series Dependencies and Intra-Series Variations Modeling

作者:Guoqi Yu · Jing Zou · Xiaowei Hu · Angelica I Aviles-Rivero · Jing Qin · Emma, Shujun Wang

机构:香港理工大学(PolyU),电子科技大学,上海AI Lab,剑桥大学

关键词:多元时序预测,时序分解

链接:https://arxiv.org/abs/2402.12694

Leddam

16. S 2 \text{S}^2 S2IP-LLM: Semantic Space Informed Prompt Learning with LLM for Time Series Forecasting

作者:Zijie Pan · Yushan Jiang · Sahil Garg · Anderson Schneider · Yuriy Nevmyvaka · Dongjin Song

机构:康涅狄格大学,摩根士丹利

关键词:预测,提示学习,大语言模型

链接:https://arxiv.org/abs/2403.05798

S2IPLLM

17. Multi-Patch Prediction: Adapting LLMs for Time Series Representation Learning

作者:Yuxuan Bian · Xuan Ju · Jiangtong Li · Zhijian Xu · Dawei Cheng · Qiang Xu

关键词:表示学习,大语言模型

链接:https://arxiv.org/abs/2402.04852

ALLM4TS

18. TSLANet: Rethinking Transformers for Time Series Representation Learning

作者:Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Xiaoli Li

机构:A*Star(新加坡科技研究局)

关键词:表示学习,轻量级模型,自适应频谱块,交互式卷积块,自监督预训练,Transformer,卷积神经网络。

链接:https://arxiv.org/abs/2404.08472

代码:https://github.com/emadeldeen24/TSLANet

TSLANet

19. MF-CLR: Multi-Frequency Contrastive Learning Representation for Time Series

作者:Jufang Duan · wei zheng · Yangzhou Du · Wenfa Wu · Haipeng Jiang · Hongsheng Qi

关键词:对比学习,表示学习

链接:https://icml.cc/virtual/2024/poster/33488

20. Timer: Transformers for Time Series at Scale

作者:Yong Liu · Haoran Zhang · Chenyu Li · Xiangdong Huang · Jianmin Wang · Mingsheng Long

关键词:时间序列分析,基础模型,Transformer,LTSM(大时间序列语言模型),统一时间序列数据集(UTSD)

链接:https://arxiv.org/abs/2402.02368

Timer

21. TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling

作者:Jiaxiang Dong, Haixu Wu, Yuxuan Wang, Yunzhong Qiu, Li Zhang, Jianmin Wang, Mingsheng Long

关键词:预训练,时间序列建模

链接:https://arxiv.org/abs/2402.02475

TimeSiam

22. UP2ME: Univariate Pre-training to Multivariate Fine-tuning as a General-purpose Framework for Multivariate Time Series Analysis

作者:Yunhao Zhang · Liu Minghao · Shengyang Zhou · Junchi Yan

关键词:时间序列分析

链接:https://icml.cc/virtual/2024/poster/33686

23. Position Paper: What Can Large Language Models Tell Us about Time Series Analysis

作者:Ming Jin · Yi-Fan Zhang · Wei Chen · Kexin Zhang · Yuxuan Liang · Bin Yang · Jindong Wang · Shirui Pan · Qingsong Wen

关键词:时间序列分析,大语言模型

LLM和时间序列结合解决现实问题的巨大潜力

24. Position Paper: Quo Vadis, Unsupervised Time Series Anomaly Detection?

作者:M. Saquib Sarfraz · Mei-Yen Chen · Lukas Layer · Kunyu Peng · Marios Koulakis

关键词:异常检测,无监督

链接:https://arxiv.org/abs/2405.02678

backbone

25. TimeMIL: Advancing Multivariate Time Series Classification via a Time-aware Multiple Instance Learning

作者:Xiwen Chen · Peijie Qiu · Wenhui Zhu · Huayu Li · Hao Wang · Aristeidis Sotiras · Yalin Wang · Abolfazl Razi

机构:克莱姆森大学,圣路易斯华盛顿大学,亚利桑那州立大学,亚利桑那大学

关键词:多元时间序列分类,多示例学习

链接:https://arxiv.org/abs/2405.03140

代码:https://github.com/xiwenc1/TimeMIL

TimeMIL

26. Learning Causal Relations from Subsampled Time Series with Two Time-Slices

作者:Anpeng Wu · Haoxuan Li · Kun Kuang · zhang keli · Fei Wu

关键词:因果推理,基于拓扑的算法、后代分层拓扑、条件独立准则

链接:https://openreview.net/forum?id=mGmx41FTTy

PM-CMR

27. Discovering Mixtures of Structural Causal Models from Time Series Data

作者:Sumanth Varambally · Yian Ma · Rose Yu

机构:加州大学圣地亚哥分校(UCSD)

关键词:结构因果模型(SCM)

链接:https://arxiv.org/abs/2310.06312

MCD-Linear

28. CauDiTS: Causal Disentangled Domain Adaptation of Multivariate Time Series

作者:Junxin Lu · Shiliang Sun

关键词:因果解纠缠,域适应

链接:https://icml.cc/virtual/2024/poster/33195

29. A Vector Quantization Pretraining Method for EEG Time Series with Random Projection and Phase Alignment

作者:Haokun GUI · Xiucheng Li · Xinyang Chen

关键词:EEG,矢量量化

链接:https://icml.cc/virtual/2024/poster/34865

30. An Empirical Examination of Balancing Strategy for Counterfactual Estimation on Time Series

作者:Qiang Huang · Chuizheng Meng · Defu Cao · Biwei Huang · Yi Chang · Yan Liu

关键词:反事实估计

链接:https://icml.cc/virtual/2024/poster/34183

31. Bayesian Online Multivariate Time Series Imputation with Functional Decomposition

作者:Shikai Fang · Qingsong Wen · Yingtao Luo · Shandian Zhe · Liang Sun

机构:犹他大学(Utah),松鼠AI,卡耐基梅隆大学(CMU),阿里巴巴达摩院

关键词:插补,高斯过程,不确定性量化

链接https://arxiv.org/abs/2308.14906

BayOTIDE

32. Conformal prediction for multi-dimensional time-series

作者:Chen Xu · Hanyang Jiang · Yao Xie

机构:佐治亚理工大学(Gatech)

关键词:共形预测,不确定性量化

链接:https://arxiv.org/abs/2403.03850

代码:https://github.com/hamrel-cxu/MultiDimSPCI

MultiDimSPCI

33. Time Weaver: A Conditional Time Series Generation Model

作者:Sai Shankar Narasimhan · Shubhankar Agarwal · Oguzhan Akcin · Sujay Sanghavi · Sandeep Chinchali

机构:德克萨斯大学奥斯汀分校(UTA)

关键词:条件时间序列生成,扩散模型

链接:https://arxiv.org/abs/2403.02682

TIME WEAVER

34. Probabilistic time series modeling with decomposable denoising diffusion model

作者:Tijin Yan · Hengheng Gong · Yongping He · Yufeng Zhan · Yuanqing Xia

关键词:概率时间序列建模,扩散模型

链接:https://icml.cc/virtual/2024/poster/34729

35. TimeX++: Learning Time-Series Explanations with Information Bottleneck

作者:Zichuan Liu · Tianchun Wang · Jimeng Shi · Xu Zheng · Zhuomin Chen · Lei Song · Wenqian Dong · Jayantha Obeysekera · Farhad Shirani · Dongsheng Luo

关键词:可解释性,信息瓶颈

链接:https://icml.cc/virtual/2024/poster/32881

36. Time Series Diffusion in the Frequency Domain

作者:Jonathan Crabbé · Nicolas Huynh · Jan Stanczuk · Mihaela van der Schaar

机构:剑桥大学

关键词:扩散模型,傅里叶分析

链接:https://arxiv.org/abs/2402.05933

代码:https://github.com/JonathanCrabbe/FourierDiffusion

FourierDiffusion

37. MOMENT: A Family of Open Time-series Foundation Models

作者:Mononito Goswami · Arjun Choudhry · Konrad Szafer · Yifu Cai · Shuo Li · Artur Dubrawski

关键词:基础模型

链接:https://arxiv.org/abs/2402.03885

代码:http://anonymous.4open.science/r/BETT-773F/

MOMENT

相关链接

ICML24全部论文:ICML 2024 Papers

🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅QRCode

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值