Unbuntu14.04 安装caffe (cuda7.5)

1.安装开发需要依赖包

sudoapt-get update

sudo apt-get install build-essential  # basic requirement  

sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libboost-all-dev libhdf5-serial- dev libgflags-dev libgoogle-glog-dev liblmdb-dev protobuf-compiler #required by caffe 

2.安装cuda7.5

下载地址 https://developer.nvidia.com/cuda-downloads,在搜索栏里搜索cuda7.5

sudo dpkg -i cuda-repo-<distro>_<version>_<architecture>.deb  

sudo apt-get update  

sudo apt-get install cuda 

重启 sudoreboot

3.安装cudnn

下载cudnn-7.5-linux-x64-v5.0-ga.tgz,官网登录下载 https://developer.nvidia.com/cudnn

转到下载目录

tar -zxvf cudnn-7.5-linux-x64-v5.0-ga.tgz  

cd cuda 

sudocp lib64/* /usr/local/cuda/lib64/

sudocpinclude/cudnn.h /usr/local/cuda/include/

更新软连接

cd/usr/local/cuda/lib64/
sudo chmod +r libcudnn.so.5.0.5
sudo ln-sf libcudnn.so.5.0.5 libcudnn.so.5
sudo ln -sf libcudnn.so.5libcudnn.so
sudo ldconfig

 4,设置环境变量

/etc/profile中添加CUDA环境变量

sudogedit /etc/profile

exportPATH=/usr/local/cuda/bin:$PATH

exportLD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH

保存后,使环境变量立即生效

source
/etc/profile

同时需要添加lib库路径:在 /etc/ld.so.conf.d/创建文件cuda.conf,加入内容如下:

/usr/local/cuda/lib64  

保存后,执行下列命令使之立刻生效

sudo ldconfig 

5,安装CUDASAMPLE

进入/usr/local/cuda/samples,执行下列命令来buildsamples

sudo make all -j4  

全部编译完成后,进入 samples/bin/x86_64/linux/release,运行deviceQuery

./deviceQuery  

如果出现显卡信息,则驱动及显卡安装成功:

  1. ./deviceQuery Starting...  

  2.  CUDA Device Query (Runtime API) version (CUDART static linking)  

  3.   

  4. Detected 1 CUDA Capable device(s)  

  5.   

  6. Device 0: "GeForce GTX 670"  

  7.   CUDA Driver Version / Runtime Version          6.5 / 6.5  

  8.   CUDA Capability Major/Minor version number:    3.0  

  9.   Total amount of global memory:                 4095 MBytes (4294246400 bytes)  

  10.   ( 7) Multiprocessors, (192) CUDA Cores/MP:     1344 CUDA Cores  

  11.   GPU Clock rate:                                1098 MHz (1.10 GHz)  

  12.   Memory Clock rate:                             3105 Mhz  

  13.   Memory Bus Width:                              256-bit  

  14.   L2 Cache Size:                                 524288 bytes  

  15.   Maximum Texture Dimension Size (x,y,z)         1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)  

  16.   Maximum Layered 1D Texture Size, (num) layers  1D=(16384), 2048 layers  

  17.   Maximum Layered 2D Texture Size, (num) layers  2D=(16384, 16384), 2048 layers  

  18.   Total amount of constant memory:               65536 bytes  

  19.   Total amount of shared memory per block:       49152 bytes  

  20.   Total number of registers available per block: 65536  

  21.   Warp size:                                     32  

  22.   Maximum number of threads per multiprocessor:  2048  

  23.   Maximum number of threads per block:           1024  

  24.   Max dimension size of a thread block (x,y,z): (1024, 1024, 64)  

  25.   Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)  

  26.   Maximum memory pitch:                          2147483647 bytes  

  27.   Texture alignment:                             512 bytes  

  28.   Concurrent copy and kernel execution:          Yes with 1 copy engine(s)  

  29.   Run time limit on kernels:                     Yes  

  30.   Integrated GPU sharing Host Memory:            No  

  31.   Support host page-locked memory mapping:       Yes  

  32.   Alignment requirement for Surfaces:            Yes  

  33.   Device has ECC support:                        Disabled  

  34.   Device supports Unified Addressing (UVA):      Yes  

  35.   Device PCI Bus ID / PCI location ID:           1 / 0  

  36.   Compute Mode:  

  37.      < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >  

  38.   

  39. deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 6.5, CUDA Runtime Version = 6.5, NumDevs = 1, Device0 = GeForce GTX 670  

  40. Result = PASS  

6,安装IntelMKL Atlas

我没有MKL,装的Atlas

安装命令:

sudo apt-get install libatlas-base-dev 

7,安装OpenCV

我安装的是2.4.10

1)下载安装脚本 https://github.com/bearpaw/Install-OpenCV

2)进入目录Install-OpenCV/Ubuntu/2.4

3)执行脚本

sudosh ./opencv2_4_10.sh   

8.安装Caffe需要的Python

网上介绍用现有的anaconda,不建议,因为路径设置麻烦,很容易出错,而且自己安装很简单也挺快的。

首先需要安装pip

sudo
apt-get install python-pip

再下载caffe,我把caffe放在用户目录下

cd
git
clone https://github.com/BVLC/caffe.git

再转到caffepython目录,安装scipy

cd
caffe/python
sudo
apt-get install python-numpy python-scipy python-matplotlib ipython
ipython-notebook python-pandas python-sympy python-nose

最后安装requirement里面的包,需要root权限

sudo
su
for
req in $(cat requirements.txt); do pip install $req; done

如果提示报错,一般是缺少必须的包引起的,直接根据提示pipinstall <package-name>就行了。

安装完后退出root权限

exit 

9.编译caffe

首先修改配置文件,回到caffe目录

cd
~/caffe
cp
Makefile.config.example Makefile.config
gedit
Makefile.config

这里仅需修改两处:

i)使用cuDNN

#
USE_CUDNN := 1 

这里去掉#,取消注释为

USE_CUDNN
:= 1 

ii)修改python包目录,这句话

PYTHON_INCLUDE
:= /usr/include/python2.7 \
  /usr/lib/python2.7/dist-packages/numpy/core/include

改为

PYTHON_INCLUDE
:= /usr/include/python2.7 \
  /usr/local/lib/python2.7/dist-packages/numpy/core/include

因为新安装的python包目录在这里: /usr/local/lib/python2.7/dist-packages/

接下来就好办了,直接make

make
all -j4
make
test
make
runtest
make
pycaffe

这时候cdcaffe下的python目录,试试caffepythonwrapper安装好没有:

python
import
caffe

如果不报错,那就说明安装好了。







展开阅读全文

没有更多推荐了,返回首页