目录
(2)合取词(conjunction)“并且”(and): ∧
(4)蕴涵词(implication)”如果…那么…”(if…then…): →
(5)双向蕴含词(two-way implication)”当且仅当”(if and only if):↔
一、数理逻辑的基本概念
逻辑学
是探索、阐述和确立有效
推理原则
的学科,最早由古希腊学者亚里士多德创立。亚里士多德在逻辑学上最重要的工作是提出
三段论
学说。
一个三段论就是一个包括有大前提、小前提和结论三个部分的论证。
逻辑学还是以自然语言来表述,可能会因为自然语言的
模糊性
损害其准确和权威。
用数学的方法研究关于推理、证明等问题
的学科就叫做
数理逻辑
(也叫做符号逻辑)。
1、命题
命题是数理逻辑中最基本的概念,
对
确定的对象
作出
判断
的
陈述句
称作命题。
如果判断正确,称命题
真
(true),
否则称命题
假
(false),
“真、假”是命题的属性,称为“
真值
”。
例如:
- 雪是白的 ——> 真命题
- 2+2=5 ——> 假命题
- 您贵姓?——> 疑问句,非命题
- x+y<10 ——> x,y是不确定的对象,非命题
排中律
排中律是传统逻辑的基本规律之一 。任一事物在同一时间里
具有
某属性
或者不具有
某种属性,而无其它可能。
“是非之间,必居其一”。 墨子也说过:“辩也者,或谓之是,或谓之非,当者胜也“——《经说下》。
反证法与排中律
传统数学证明中经常采用的“反证法”即利用了排中律:
- 要证明一个命题为真,并不直接证明;
- 而是假设命题不为真,推出矛盾;
- 根据排中律,此命题非假,即真;
- 从而间接证明命题为真。
2、原子命题和复合命题
逻辑联结词(logical connectives):连接命题,对真值进行运算的词;
原子命题(atom proposition):不含有逻辑联结词的命题;
复合命题
(compound proposition):包含了原子命题和逻辑联结词的命题。
比如:2是偶数
而且
3也是偶数。这是由
原子命题
和一个
逻辑联结词
“而且
”连接而成的
复合命题。
二、联结词
数理逻辑创立的初衷:对逻辑和思维过程进行形式化,使之象算术那样简单明了,确切无误。
1、如何把命题变成“算式”?
- 形式化的第一步:抽象(abstraction):
- 仅关注命题的本质属性:真值,而抛弃其丰富的内涵;
- 仅关注逻辑联结词的本质属性:对真值的运算,而抛弃多变的语言表达方式。
- 然后是将这两者都变成符号,以规则相连接。
- 真命题用t表示,假命题用f表示。
- 原子命题一般用p, q, r, s或pi, qi, ri, si表示。
- 逻辑联结词用特殊符号来表示:并非(not):¬ ;并且(and):∧;或(or):∨ ;如果……那么……(if ... then ...):→ ;当且仅当(if and only if):↔
2、联结词
(1)否定词(negation)“并非”(not):¬
¬p的逻辑关系为p不成立
注意在
包含多个对象
判断的命题否定时,其意义的变化:
如:
“天鹅
都是
白的”,其否定并不是“天鹅
都不是
白的” ,而是“天鹅
不都是
白的”或“
并非所有
天鹅
都是
白的”。
(2)合取词(conjunction)“并且”(and): ∧
p∧q的逻辑关系为:p和q同时成立
(3)析取词(disjunction)”或”(or):∨
p∨q的逻辑关系为p和q中至少一个成立
自然语言中的“或”可以符号化为∨,但有
时要注意原命题中的“或”可能表示
排斥性
选择:
例如:李四学过德语或法语( 相容或 ):p∨qp: 李四学过德语, q: 李四学过法语张三生于1972年或1973年( 排斥或 ): p∨qp: 张三生于 1972 年, q: 张三生于 1973 年
(4)蕴涵词(implication)”如果…那么…”(if…then…): →
p → q的逻辑关系是,p是q的 充分条 件 ,或者说q是p的 必要条件
p→q中的p称作
蕴涵前件
,q称作
蕴涵后件,
自然语言中的许多条件连接词都可以符号化为→,但是要注意条件的
顺序,如:
“只要
…
就
…”
,
“
如果
…
那么
…”
,
“
只有
…
才
…” ,自然语言中,条件语句一般都具有内在的联系,而数理逻辑中的蕴涵则仅是命题的一种
连接
,
不一定
具有什么
内在联系。
例如:只要 2是偶数,雪 就 是黑的: p→qp: 2 是偶数, q: 雪是黑的p 为真, q 为假,本命题为假
(5)双向蕴含词(two-way implication)”当且仅当”(if and only if):↔
p ↔ q的逻辑关系是p与q 互为充分必 要条件 ,在p,q真值相同的情况下, p ↔ q为真
例如:圆1和圆2面积相等 当且仅当 它们的半径相等: p↔ qp: 圆 1 和圆 2 面积相等, q: 圆 1 和圆 2 半径相等不管 p 和 q 的真值如何, p ↔ q 为真
三、命题公式
命题公式(proposition formula)的组成成分
- 命题常元(proposition constants):表示具体命题及表示常命题的p, q, r, s等和t,f
- 命题变元(proposition variables):以“真,假”或者“1,0”为取值范围的变量,仍用p, q, r, s等表示
命题公式(proposition formula):
由命题
常元
、
变元
和
联结词
组成的形式更为
复杂
的命题
命题公式( proposition formula )定义① 命题常元和命题变元 是命题公式 ,特别的称作原子公式或原子② 如果A,B 是命题公式 ,那么(¬A), (A∧B), (A∨B), (A→B), (A ↔ B)也 是命题公式③ 只有 有限步 引用上述两条所组成的符号串 是命题公式根据定义: (¬(p→(q∧r))) 是命题公式以下式子 都不是 命题公式
- (qp) ——> 没有联结词
- (p1∧(p2∧… ——> 不是有限步
1、逻辑联结词优先级
联结词{¬,∧,∨,→,
↔
}中, ¬是
一元
联结词,
其它都是连接两个命题的
二元
联结词
我们定义优先级为:¬, [∧∨], →, ↔ 除非有括号,否则按照优先级从高到低,从 左到右的次序结合如:
- ¬p∨q 等同于 ((¬p)∨q)
- p→q∧r→s 并不是 ((p→q)∧(r→s)) ,其实是 ((p→(q∧r))→s)
2、真值函数
如果将联结词看作逻辑
运算符
,那么
包含命题变元p1, p2, …pn的公式A
可以看作是关于p1, p2, …pn的一个
真值函数,
每个变元的取值范围是
{0, 1} ,
真值函数值的取值范围也是
{0, 1}。
对任意给定的p1, p2, …pn的一种取
值 状 况 组 合,称 为 指 派 或 者
赋 值
(assignments),
赋值用希腊字母
α
,
β
等表示,
对于每个赋值,公式A均有一个确定
的真值。
这样,命题公式在
形式
上是一个规则
的字符串,
内容
上则对应一个真值函
数。
对于所有可能的赋值,公式A的真值
可以用
真值表
来确定。
当A(p1, p2, …pn)中包含有k个联结
词时,公式A的真值表应为
2
n
行、
k+n
列,
前
n
列是所有变元的
取值组合,
最后
1
列是公式A的
真值。
当公式A对赋值α为真时,
称α是A的
成真赋值
,或者α
弄真
A,
记做
α(A)=1。
反之,
称α是A的
成假赋值
,或者α
弄假
A,记做
α(A)=0。