如何实现单服务器300万个长连接的?

引自:http://www.zhihu.com/question/20831000

看到一篇文章说“最终我们采用了多消息循环、异步非阻塞的模型,在一台双核、24G内存的服务器上,实现峰值维持超过300万个长连接。”
很疑惑,这是吹牛还是真的做到了?
什么是“多消息循环、异步非阻塞”?有什么特点?
用单台服务器实现高连接数,和使用多台服务器实现高连接数,哪种成本更高?
按投票排序 按时间排序

12 个回答

彭哲夫一个默默无闻的系统工程师

这……我能说也不怎么困难咩?实际在去年操作过一次,并且看过一篇文章(研究eurasia socket内存使用量的时候翻到的最后会单独列出),我的成果是2G内存双核18W左右的并发连接。

1. 事件驱动,这个只是为了IO和CPU异步,让CPU从IO等待中解放出来,这样就能在CPU循环中往死里accept连接了,nginx就靠这个把apache玩死的,nodejs的快不仅仅因为这个,语言层的magic就扯远了。

2. 利用双核,2个核就2个进程,一个进程一个事件驱动核(epoll,select啥的),增加链接吞吐。

3. 参数调优,这才是最重要的一步,一个Socket连接默认是有内存消耗的,我不记得Python的Socket占用是4M还是多少来着了,当然这个也可以调优,eurasia的作者沈大侠说过可以搞到2M来着?当然这对于一个24G的服务器来说300w还是搞不定的,但是就送TCP本身来分析的话,tcp_rmem/tcp_wmem,这2个系统tcp读写缓存默认都很高,拉低到4k,然后把tcp_mem也得改下,这个说起来太麻烦,man一下就有了,总的来说就是得拉高High值

4. 网卡要给力,端口给足,句柄加高。

参考文献: 100万并发连接服务器笔记之1M并发连接目标达成

从我的测试和此文的结论来看,他在7.5G左右实现了1M并发,24G到3M差不多,我那么挫的水平2G 18W,24G怎么说也能上2M啊,而且如果仅仅是推送,业务层逻辑复杂度不强,等于就是个Proxy所以恩。

至于单台和多台之间的选择,追求技术的,单台你屌你牛逼,追求稳妥Crash也不会造成太大影响还想在推送一层玩点花样用点动态语言的,多台不二选择。

以上。
不是吹牛,理论上完全可以达到。
(以下参考值皆是Linux平台上)

1,Linux单个进程可以维持的连接数(fd)理论值是通过ulimit -a设置,或在server内使用setrlimit()设置,具体最大是多少?我看我的64机上是64bits的一个数值,所以,权且认为理论上是2^64-1。 anyway,几百万不是问题。

2,TCP连接数。因为是Server端,不用向系统申请临时端口,只占fd资源。所以tcp连接数不受限制。

3,维持连接当然需要内存消耗,假如每个连接(fd),我们为其分配5k字节(应该足够了,就存放一些用户信息之类的)。这样是5k*3000000=15G。 文中有24G内存,应该也足够了。

================================
下面我们说下文中提及的 多消息循环、异步非阻塞。
先说异步和非阻塞吧。权且认为这俩是一个概念。都是指的IO的异步和非阻塞。
1,异步+非阻塞的话,Linux上必然是epoll了。
原理上简而言之吧,异步就是基于事件的读写,epoll同时监听所有的tcp连接(fd),当有哪些连接上有了事件(读、写、错误),就返回有事件的连接集合,然后处理这个集合里的需要处理的连接事件。这儿就是基于事件的异步IO。
非阻塞。 在得到有事件的tcp连接集合之后,逐一进行读(写)。分开来说,需要读的fd,其实数据已经到OS的tcp buffer里了,读完直接返回,CPU不等待。(返回EAGAIN,其实就进行了几次memcpy); 需要写的连接,同样,其实是把数据写到了OS的tcp buffer里,写满为止。。不会等待对方发来ACK再返回。这样,其实这里CPU基本上只进行了一些memcpy的操作。。即便同时几十万连接有事件,也是瞬间处理完的事。。。然后,CPU再进行异步io等待(epoll_wait())。
当然这儿要充分利用多核,最好将io线程和work线程分开。

2,多消息循环。。这个应该是他们内部的概念。我个人猜测是异步的消息协议。
举例子,传统的TCP连接是一问一答,如HTTP。

如图,客户端在发送A和发送B之间,CPU就纯等待。服务器在回复A之后,也是纯等待B包的到来。。这样的话。TCP吞吐量很低。

异步协议就是读写完全分开,无需等待(当然,在包内需要自行对应包的ID来识别对应请求包和回复包)。如图

这样的话,双方在任一时刻,都尽最大努力的发包。充分利用tcp连接。使单条TCP连接吞量直线上升。而且,如果其中有一个包处理的极慢,丝豪不影响其他包的回包。


大体推算一下流量,因为300万的客户端均是手机客户端,,假如每个人每天平均收到500条push信息。300万*500=1500000000, 1500000000 /一天86400=17361。一个封装的不错的server每秒进行2W次IO是很轻松的事。

最后说单台Hold大量和多台Hold小量的区别。
成本上肯定是多台的硬件本高了。。但是,这个量级,从架构上,绝对是多台更加合理。我们假如,每个连接有一个用户认证的过程 ,用户认证时要去数据库(或其他类似db)查询用户信息,当你升级服务重启时,300万用户瞬间断开,客户端会重连;再次启动之后,300万用户同时连接,同时请求库。。然后,杯具了。。。

张博江湖人,程序员

刚好搜索长连接的时候看到这个问题,就来回答一下,算做是知乎的处女答。

首先理解多消息循环、异步非阻塞从程序设计角度来说是两个层次的东西。

1.多消息循环指的就是利用到epoll或者select来做的IO多路复用机制

2.异步非阻塞是指利用到下层的IO多路复用做的基于事件触发方式的一种设计方式


其实现在的异步模型大同小异,大致过程如下(分三层,一二层就是上面所说的两个层次):

1.(最重要的)维护一个事件反应堆,用epoll或者select或者kqueue来做,反应堆的作用就是用同步的方式处理异步问题,在反应堆上注册好事件后如果相应的事件发生,就调用其回调函数,一般情况下反应堆是一个进程内全局唯一的。

2.上层的buffer,维护一系列的buffer用于管理每一个连接的数据,可以把buffer看做是一个对象。一般在一个连接到达的时候分配一个buffer对象,然后上层的连接注册事件的时候是注册到buffer上,buffer再注册到反应堆中。

3.就是一个个的连接对象,把每一个来自外部的连接都抽象为一个具体的对象,用于管理每一个连接,其中这个对象就包含了上面所说的buffer对象和其他一些状态。


处理并发的过程就是这样的:

1.为监听套接口在反应堆注册一个事件,此事件发生调用对应的回调,一般情况是accept这个连接,然后为这个连接创建连接对象,统一管理。

2.为此连接创建buffer对象,并注册对应的读写错误事件的回调(上层对于buffer的读写事件回调都是业务层来控制的了).

3.在加入监听队列后是离散的,准确来说epoll中是由一颗红黑树维护的,每一个事件的先后顺序跟它达到的顺序有关。

4.维护了众多的连接对象,也就是这里的并发情况了,如果有事件发生会调用回调来处理,理论上无阻塞情况减少了很多CPU的wait,这部分时间用于处理真正的业务,所以异步模型能够带来很高的CPU处理能力,减少等待,单位时间处理的事件越多,从外部来看并发就很高,实际上也是一个串行的工作状态,但是串行过程没有等待。

达达程序员

不说清楚具体每秒收发包数量以及包大小就是耍流氓!300万静态连接纯吃内存谁都搞得来,3000连接每秒10000请求和300万连接每秒100请求你说谁消耗大?同样每秒100请求,每个请求广播给10个客户端和广播给100客户端你说哪个消耗大?关键数据不说,还分析啥?
这个模型现在被 nginx/node.js 采用,建议你仔细研究一下相关文档、代码。
单机高连接数好与不好跟业务有一定的相关性,当然跟“钱”也有关系。

如果内存可以更多,还可以维持更多的连接数,无需吹牛。

2013年11月4日更新:
这两天发现还有不少朋友对这个话题有兴趣,再细说一点。
  • 消息循环。前面提到过 nginx/node.js 都是采用的 IO 事件触发的消息循环,如果不了解可以直接看代码。
  • 多消息循环。在多核 CPU 的服务器,是一个 IO 口上的事件用多个进程处理,充分利用多核的运算能力。每个进程运行一下独立的消息循环,一般来说,进程数据与 CPU 核数相同。
  • 异步非阻塞 就更容易理解了。CPU 不同步读写 IO,减少 CPU 等待时间。在业务层面的通讯也全部采用异步模型。
正如我前面提到的,这些模型,在 nginx 上几乎都能找到代码。最近比较流行的 node.js 也有大量异步模型。

2014/06/19 更新:
最近我们用 Erlang 实现了了一个版本,维持长连接的效果也很好,开发时间成本低。

pig pig网管

1.这很可能是广告贴,最开始的标题是:"极光推送是如何实现单服务器300万个长连接的?",后来被有知网友给去掉了。

2.所谓的“多消息循环、异步非阻塞"只是很简单的东西,很多书上直接有这些东西。就像别的回答一样,不了解具体业务细节,一味夸大某个参数,是有误导推销嫌疑。

3.辩证看待,这家公司可能在开发体验、用户体验以及细节优化方面做的不错。

罗然是在下输了

如果不考虑吞吐量和数据量,单就连接数来说可以扩展至无限。这个命题本身看起来很NB,实际上很多没有交代清楚。

知乎用户,运维

网络设备来看的话,2G内存几百万会话的防火墙轻轻松松。

main dark技术宅

我记得有人测过iocp三四万个连接cpu只有百分之3~5,异步io来说保持连接不需要cpu的,只需要内存,
看大家的讨论,其实就是java里面的nio模型,10几年前java就实现了这个
一台服务器有65536个端口,为什么能长连接300W个?

VrWorkingDo what U think!

仅仅凭几个名词无法判断,需要较为详细的架构模型才能分析。
汉字博大精深,会遣词造句的人太多。

已标记关键词 清除标记
课程简介: 历经半个多月的时间,Debug亲自撸的 “企业员工角色权限管理平台” 终于完成了。正如字面意思,本课程讲解的是一个真正意义上的、企业级的项目实战,主要介绍了企业级应用系统中后端应用权限的管理,其中主要涵盖了六大核心业务模块、十几张数据库表。 其中的核心业务模块主要包括用户模块、部门模块、岗位模块、角色模块、菜模块和系统日志模块;与此同时,Debug还亲自撸了额外的附属模块,包括字典管理模块、商品分类模块以及考勤管理模块等等,主要是为了更好地巩固相应的技术栈以及企业应用系统业务模块的开发流程! 核心技术栈列表: 值得介绍的是,本课程在技术栈层面涵盖了前端和后端的大部分常用技术,包括Spring Boot、Spring MVC、Mybatis、Mybatis-Plus、Shiro(身份认证与资源授权跟会话等等)、Spring AOP、防止XSS攻击、防止SQL注入攻击、过滤器Filter、验证码Kaptcha、热部署插件Devtools、POI、Vue、LayUI、ElementUI、JQuery、HTML、Bootstrap、Freemarker、一键打包部署运行工具Wagon等等,如下图所示: 课程内容与收益: 总的来说,本课程是一门具有很强实践性质的“项目实战”课程,即“企业应用员工角色权限管理平台”,主要介绍了当前企业级应用系统中员工、部门、岗位、角色、权限、菜以及其他实体模块的管理;其中,还重点讲解了如何基于Shiro的资源授权实现员工-角色-操作权限、员工-角色-数据权限的管理;在课程的最后,还介绍了如何实现一键打包上传部署运行项目等等。如下图所示为本权限管理平台的数据库设计图: 以下为项目整体的运行效果截图: 值得一提的是,在本课程中,Debug也向各位小伙伴介绍了如何在企业级应用系统业务模块的开发中,前端到后端再到数据库,最后再到服务器的上线部署运行等流程,如下图所示:
©️2020 CSDN 皮肤主题: 精致技术 设计师:CSDN官方博客 返回首页