Pycharm 调用 memory_profiler 反应内存占用方法小记

Pycharm memory_profiler 调用方法小记

最近要对研究方法的计算复杂度进行比较,想要通过对比几种模型的时间消耗和内存占用来侧面反应这一下,找了一圈帖子,时间复杂度就是用Time实现,用起来很简单,看内容占用的方法,大神都说memory_profiler 好用,试了半天,也没运行成功(我太菜了),摸索了一会才成功实现,这篇帖子主要用于记录以下这次过程,方便以后使用。也希望能够帮助到和我一样的小菜鸟。

(1)时间复杂度、时间消耗

import time

start = time.perf_counter() # 开始时间

end = time.perf_counter() # 停止时间

print(‘运行时间:%s’ % (end - start))

放上我自己程序的截图

import time

def brb(input, theta, delta, belta, c)
PyCharm中安装line_profiler,可以按照以下步骤进行操作: 1. 打开PyCharm并进入你的项目。 2. 点击顶部菜单栏中的"File"。 3. 选择"Settings"。 4. 在设置窗口中,展开"Project"选项。 5. 选择"Project Interpreter"。 6. 在右侧的依赖项列表中,点击"+"按钮。 7. 在搜索框中输入"line_profiler"。 8. 在搜索结果中选择"line_profiler"并点击"Install Package"按钮。 9. 等待安装完成。 这样,你就成功在PyCharm中安装了line_profiler。现在,你可以在代码中使用line_profiler来进行性能分析了。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [Python性能分析工具Line_profiler](https://blog.csdn.net/weixin_44613728/article/details/120411325)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [python性能分析之line_profiler模块-耗时,效率 时间](https://blog.csdn.net/kyle1314608/article/details/103123187)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sweet_Chanyelo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值