一、题目:剑指 Offer 11. 旋转数组的最小数字+154. 寻找旋转排序数组中的最小值 II
把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个递增排序的数组的一个旋转,输出旋转数组的最小元素。
例如,数组 [3,4,5,1,2] 为 [1,2,3,4,5] 的一个旋转,该数组的最小值为1。
示例 1:
输入:[3,4,5,1,2]
输出:1
示例 2:
输入:[2,2,2,0,1]
输出:0
PS:本题与主站154. 寻找旋转排序数组中的最小值 II 相同:
二、思路和代码:
首先要明白一件事,那就是我们要找的就是数组中最小的值。
方法一:还是不讲武德的STL
1.1:直接查找最小值
class Solution {
public:
int minArray(vector<int>& nums) {
return *min_element(nums.begin(),nums.end());
}
};
1.2:把数组使用sort()排序,就成了一个从小到大排列的数组,第一个元素就是最小的值。
复杂度来自于sort()函数:O(nlogn);
class Solution {
public:
int minArray(vector<int>& numbers) {
sort(numbers.begin(),numbers.end());
return numbers[0];
}
};
方法二:遍历数组
因为输入的是一个递增排序的数组的一个旋转,数组中最多只有两个递增序列。
从1遍历一次数组,如果它的前一个比它大,那说明他就是我们要找的数字;停止遍历,
如果遍历到最后还没找到这个数字,说明这个数组是排好序的。返回数组的第一个值。
复杂度为遍历一次的开销:O(n))
class Solution {
public:
int minArray(vector<int>& numbers) {
if(numbers.size()==1)return numbers[0];
int i=1;
//从1遍历一次数组,如果它的前一个比它大,那说明它就是我们要找的数字;停止遍历,
for(;i<numbers.size();i++){
if(numbers[i]<numbers[i-1]) {
break;
}
}
//如果遍历到最后还没找到这个数字,说明这个数组是排好序的。返回数组的第一个值。
if(i==numbers.size())return numbers[0];
return numbers[i];
}
};
方法三:二分法
如果第一位和最后一位和中位数都相等,那么对这部分采用顺序查找最小值:
如果中位数大于第一位,那说明前半部分是排好的。让中位数成为第一位;
如果最后一位大于中位数,说明后半部分是排好的,让中位数成为最后一位;
返回中位数。
class Solution {
public:
int minArray(vector<int>& numbers) {
int i=0,j=numbers.size()-1;
int med =i;
while(numbers[i]>=numbers[j]){
if(i+1==j){med=j;break;}
med = (i+j)/2;
//如果第一位==最后一位==中位数,那么对这部分采用顺序查找最小值:
if(numbers[i]==numbers[med] && numbers[med]==numbers[j]){
return minres(numbers,i,j);
}
//正常二分
if(numbers[i]<=numbers[med]){
i=med;
}
if(numbers[j]>=numbers[med]){
j=med;
}
}
return numbers[med];
}
//当numbers[i]==numbers[med]==numbers[j]时候,也就是有这个数组中不是完全严格的递增数组,或者只有一个值的情况
int minres(vector<int>& numbers,int i,int j){ //对i-j部分采用顺序查找最小值
int res=numbers[i];
for(int m=i+1;m<=j;++m){
if(res > numbers[m]) res = numbers[m];
}
return res;
}
};
至此,剑指 Offer 11. 旋转数组的最小数字 完美解决!
怕什么真理无穷,进一步有进一步的欢喜!