参考
华为云学院
概述
单个感知器的表达能力有限,它只能表达线性决策面(超平面)。如果把多个感知器连接起来,就可以表达种类繁多的非线性曲面。
神经网络
神经网络基于感知器模型做了三点扩展:
(1)加入隐藏层,隐藏层可以有多层,增强模型的表达能力
(2)多个输出层神经元,灵活应用于分类回归,分类,语义分割等。
(3)扩展激活函数,包括Sigmoid函数,Softmax和ReLU等。
什么是深度学习
隐藏层比较多(大于2)的神经网络叫做深度神经网络(DNN)。也叫作前馈神经网络(FeedForward Neural Network)或者多层感知器(Multilayer Perception,MLP),是典型的深度学习模型。
深度前馈网络推导
对于第二层的三个神经元的输出
转换成矩阵表达式
进一步推广可得