【机器学习】深度前馈网络

参考

华为云学院

概述

单个感知器的表达能力有限,它只能表达线性决策面(超平面)。如果把多个感知器连接起来,就可以表达种类繁多的非线性曲面。

神经网络

神经网络基于感知器模型做了三点扩展:
(1)加入隐藏层,隐藏层可以有多层,增强模型的表达能力
(2)多个输出层神经元,灵活应用于分类回归,分类,语义分割等。
(3)扩展激活函数,包括Sigmoid函数,Softmax和ReLU等。

什么是深度学习

隐藏层比较多(大于2)的神经网络叫做深度神经网络(DNN)。也叫作前馈神经网络(FeedForward Neural Network)或者多层感知器(Multilayer Perception,MLP),是典型的深度学习模型。

深度前馈网络推导

在这里插入图片描述
对于第二层的三个神经元的输出
在这里插入图片描述
转换成矩阵表达式
在这里插入图片描述
进一步推广可得
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值