数据表取行与列
#只取前7行
new_df = df.loc[0:7]
new_df
注意看序号,loc与iloc的不同之处在于,loc索引的前七行代表的是序号前7个。
#只取前7行
new_df = df.iloc[0:7]
new_df
注意,iloc索引的前七行代表的是前七行数据!序号可能对应的是大于7的数字。
一般情况下取行与列都是指代的多少行数据、多少列数据,因此多用ilco。
取分位数
- 直接利用quantile函数计算分位数
#用quantile计算第60%的分位数
z_df.quantile(0.6)
`
上面的这种方法是对一个数据集的**所有变量同时**求解出6分位数出来。
2. 通过percentile函数(可以同时计算出**单个变量的多个分位数**)
```python
import numpy as np
a = np.percentile(z_df['天数'], (25,30,40,50,60,75), interpolation='midpoint')
print('天数分位数',a)
计算相关系数
计算"X"与"Y"之间的相关系数
`print('\n计算"X1"与"X2"之间的相关系数:',data["X1"].corr(data["X2"]))`
给出Y变量与其他变量之间的相关系数
print("\nX1变量与其他变量之间的相关系数:\n",data.corr()["X1"])
计算所有变量的相关系数
print("相关系数矩阵:\n",data.corr() )