Codeforces Round #461 (Div. 2) C. Cave Painting(暴力)

9 篇文章 0 订阅
8 篇文章 0 订阅

C. Cave Painting
time limit per test1 second
memory limit per test256 megabytes
inputstandard input
outputstandard output
Imp is watching a documentary about cave painting.

Some numbers, carved in chaotic order, immediately attracted his attention. Imp rapidly proposed a guess that they are the remainders of division of a number n by all integers i from 1 to k. Unfortunately, there are too many integers to analyze for Imp.

Imp wants you to check whether all these remainders are distinct. Formally, he wants to check, if all , 1 ≤ i ≤ k, are distinct, i. e. there is no such pair (i, j) that:

1 ≤ i < j ≤ k,
, where is the remainder of division x by y.
Input
The only line contains two integers n, k (1 ≤ n, k ≤ 1018).

Output
Print “Yes”, if all the remainders are distinct, and “No” otherwise.

You can print each letter in arbitrary case (lower or upper).

Examples
inputCopy
4 4
output
No
inputCopy
5 3
output
Yes
Note
In the first sample remainders modulo 1 and 4 coincide.
题意:给定一个n,k,如果n mod i(1<=i<=k)是不同的,输出Yes,否则输出No。
思路:看到数据范围下了一跳,想了很久数论,但好像都行不通。最后暴力了一发,AC?
首先n%1=0,那么n%2取值只有0,1,如果是0那么No,所以n%2取值只能是1,递推下去……找到规律,若要Yes,n%i只能为i-1。仔细想想,能够Yes的n和k应该都不会很大。暴力即可。
代码:

#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#include<map>
#include<set>
#define met(s,k) memset(s,k,sizeof s)
#define scan(a) scanf("%d",&a)
#define scanl(a) scanf("%lld",&a)
#define scann(a,b) scanf("%d%d",&a,&b)
#define scannl(a,b) scanf("%lld%lld",&a,&b)
#define scannn(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define prin(a) printf("%d\n",a)
#define prinl(a) printf("%lld\n",a)
using namespace std;
typedef long long ll;
const int maxn=505*505;

int main()
{
    ll n,k;
    int flag=0;
    scannl(n,k);
    if(k>=n&&n!=1)
    {
        printf("No\n");
        return  0;
    }
    for(int i=2;i<=k;i++)
    {
        if(n%i!=i-1)
        {
            printf("No\n");
            flag=1;
            break;
        }
    }
    if(!flag)printf("Yes\n");

    return  0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值