NLP(VI):使用sklearn进行文本情感分类(上)

该博客介绍了如何使用sklearn进行文本情感分类,包括获取数据、数据加载、文本向量化、训练贝叶斯和逻辑回归模型,并通过十折交叉验证寻找最佳参数,最终得到模型的准确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

NLP(VI):使用sklearn进行文本情感分类(上)

这一节我们使用sklearn训练分类模型以实现对文本数据的情感分类。

获得数据

这次的数据我已经上传了,可从以下链接下载:
训练集:https://download.csdn.net/download/swy_swy_swy/87581709
测试集:https://download.csdn.net/download/swy_swy_swy/87581702
数据标签为二分类标签,0为消极情绪,1为积极情绪。

加载数据

我们使用pandas处理csv文件。

import sklearn
import pandas as pd
import numpy as np
def csv_loader(filepath):
  return pd.read_csv(filepath)

twitter_train_df = csv_loader('sentiment-train.csv')
twitter_test_df = csv_loader('sentiment-test.csv')
文本向量化

sklearn本质上是如何“阅读”一个文本呢?它本质上是不懂人类的语言的,一段文本对于它来说是一个词语的集合,或说“一袋子单词”(a bag of words)。在训练模型之前,需要对所有文本“向量化”,也就是每一个单词都有一个对应的编号,当然,相同的单词即使在统一数据集的不同样本中编号也是相同的。这样,一段文本就变成了一个编号序列,也就是一个向量。
我们使用sklearn的CountVectorizer来进行向量化:

from sklearn.feature_extraction.text import CountVectorizer
def feature_extracter(train_df, test_df, binary_flag=False, m_features=1000, has_test=True):
  vectorizer = CountVectorizer(stop_words='english', max_features=m_features, binary=binary_flag)
  train_texts = np.array(train_df['text']).tolist()
  test_texts = []
  if has_test:
    test_texts = np.array(test_df['text']).tolist()
  vecs 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值