基于深度学习模型的 Sentiment Analysis 方法,用于处理用户的文本评论,分析其情感倾向,实现推荐系统的个性化推荐

本文介绍了基于深度学习的Sentiment Analysis方法,用于处理文本评论,分析情感倾向,实现推荐系统的个性化推荐。通过深度学习模型,结合Word Embedding技术,有效解决了传统文本处理的局限性。实验表明,该方法优于传统文本处理和机器学习方法,尤其在DNN分类器上表现出色。文章涵盖了基本概念、算法原理、代码实例和未来趋势,有助于读者深入理解情感分析在推荐系统中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

在推荐系统领域,基于文本数据的产品或服务的 Sentiment Analysis 是预测用户对某一产品或服务的喜好程度、满意度的关键环节。其主要目的是自动提取用户的情感倾向、评价对象、态度特征等,通过分析用户的评论、问卷调查等,对产品或服务进行正面或负面评价,实现个性化推荐。然而,传统的文本处理方法对于高效率地处理用户输入的数据来说存在着严重的局限性,如分词、词性标注、命名实体识别等,这些都需要耗费大量的时间和计算资源,因此,如何快速有效地利用机器学习方法对用户的评论进行分类并分析其情感态度,成为研究的热点。近年来,随着深度学习技术的兴起,一些模型使用了深度神经网络(DNN)进行处理,取得了较好的效果。此外,随着大规模的社会媒体数据集的涌现,基于文本的数据建模将越来越普遍。
本文基于文本数据的 Sentiment Analysis 的最新进展,结合深度学习的方法,提出了一个基于深度学习模型的 Sentiment Analysis 方法,用于处理用户的文本评论,分析其情感倾向,实现推荐系统的个性化推荐。该方法可以把文本转化成一个向量,用机器学习的方法训练出一个 Sentiment Analysis 模型,从而实现对用户评论的情感分析,并对推荐系统产生巨大的影响。本文的主要贡献如下:

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值