数据分析案例

数据分析案例

数据分析案例要求

电商数据分析案例

电商数据分析案例
一.数据集介绍

此次的数据集来自kaggle的关于在线零售业务的交易数据,该公司主要销售礼品,大部分出售对象是面向批发商。

二.数据集字段介绍

数据包含541910行,8个字段,字段内容为:

InvoiceNo: 订单编号,每笔交易有6个整数,退货订单编号开头有字母’C’。
StockCode: 产品编号,由5个整数组成。
Description: 产品描述。
Quantity: 产品数量,有负号的表示退货
InvoiceDate: 订单日期和时间。
UnitPrice: 单价(英镑),单位产品的价格。
CustomerID:客户编号,每个客户编号由5位数字组成。
Country: 国家的名称,每个客户所在国家/地区的名称。

    
三.分析内容

1.购买商品数前十的国家是?	条形图
2.交易额前十的国家是?	 条形图	
3.哪些月份销量较佳?       
4.客单价多少?			总金额/总客户数
5.用户消费行为分析		   RFM


'''
    数据的来源:
        某英国的kaggle电商公司的数据,主要产品是零售批发

    数据的字段
    InvoiceNo:      订单号
    StockCode:      商品编号
    Description:    商品描述
    Quantity:       数量
    InvoiceDate      日期
    UnitPrice        单价
    CustomerID       客户id
    Country          国家

    分析的需求?
    1.购买商品数前十的国家是?
    2.交易额前十的国家是?
    3.哪些月份销量较佳?
    4.客单价多少?
    5.用户消费行为分析
'''
'''
    数据分析的基本步骤
    1、加载数据
    2、观察数据
    3、数据处理:数据清洗
    4、建模(完成KPI)
    5、可视化
    6、总结报告
'''
import matplotlib.pyplot as plt
import pandas as pd
plt.rcParams['font.sans-serif'] = ['FangSong']
print('----------------step1:加载数据----------------')
df = pd.read_csv('data.csv', dtype=object)

print('----------------step2:观察数据----------------')
print('列名:\n', df.columns)
print()
print('数据类型:\n',df.dtypes)
print()
print('形状:\n',df.shape)
print()
print('索引:\n', df.index)
print()
print('非空统计-计数:\n', df.count())
print()
# 一般无效,数据的类型没有做转换,所以一般先对数据进行清洗
# print('描述性统计:\n', df.describe())
# print()
print('前5条数据:\n', df.head())
print()
print('数据的基本信息:\n',df.info())
'''
通过数据观察,初步了解以下问题
    问题:
    1、数据类型有问题
    2、数据存在缺失值
    3、数据有异常(有负数的数据,退货数据,不需要去分析)
    4、缺少金额一列
'''

print('----------------step3:数据处理-数据清洗----------------')
'''
    一般在做数据分析前,需要对数据进行处理操作,保证数据的准确性
    数据清洗主要包括:
    1、缺失值处理
    2、异常值处理
    3、重复值处理
    4、子集的选择
    5、类型的转换
    6、重命名
    7、数据排序
    8、字段统一化
'''
'''
    1、缺失值处理
'''
df.dropna(inplace=True)

'''
    2、类型转换
'''
df['Quantity'] = df['Quantity'].astype(float)
df['UnitPrice'] = df['UnitPrice'].astype(float)
df['InvoiceDate'] = pd.to_datetime(df['InvoiceDate'])
'''
    3、异常值处理:去除负数的数据
'''
df = df[ df['Quantity']>=0 ]
print(df.describe())
'''
    4、重命名:不需要
    df.rename(columns={旧名:新名...})
'''
'''
    5、排序
'''
df.sort_values(by='InvoiceDate', inplace=True, ignore_index=True)

'''
    6、子集的选择
'''
df['money'] = df['Quantity']*df['UnitPrice']
print(df.head())

'''
    7、字段统一化
    usa USA 是同一个国家,但是不进行同一化处理,会影响结果
     USA
    USA
    apply(处理函数)
    处理函数:去除前后空格,全部转换成大写
'''
df['Country'] = df['Country'].str.upper()
df['Country'] = df['Country'].str.strip()
print(df['Country'])

# 先拷贝元数据
kpi_df = df.copy()
print('----------------step4:建模,完成KPI----------------')
plt.figure('kaggle电商数据分析', figsize=(6.4*1.5,4.8*1.5))
# 封装代码
def kpi(column, i, kpi_title):
    # kpi1:购买商品数前十的国家是?
    # kpi2:交易额前十的国家是?
    kpi1_data = kpi_df.groupby(by='Country')[[column]].sum()
    kpi1_data.sort_values(by=column, ascending=False,inplace=True)
    top_ten_quantity = kpi1_data[:10]
    print(top_ten_quantity)
    plt.subplot(2,2,i)
    plt.title(kpi_title)
    if i in [1,3]:
        plt.xlabel('国家', fontsize=10)
        plt.ylabel('数量', fontsize=10)
        plt.xticks(rotation=90)
        plt.bar(top_ten_quantity.index, top_ten_quantity[column])
    else:
        plt.xlabel('数量', fontsize=10)
        plt.ylabel('国家', fontsize=10)
        plt.barh(top_ten_quantity.index, top_ten_quantity[column])

kpi('Quantity',1,'购买商品数前十的国家是?')
kpi('Quantity',2,'购买商品数前十的国家是?')
kpi('money', 3, '交易额前十的国家是?')
kpi('money', 4, '交易额前十的国家是?')
plt.show()

# kpi3:哪些月份销量较佳?
print('==============================3.哪些月份销量较佳?==================================')
kpi3_data = kpi_df.groupby(by=df['InvoiceDate'].dt.month)[['Quantity']].sum()
kpi3_data.sort_values(by='Quantity', ascending=False,inplace=True)
print(kpi3_data)

# 4.客单价多少?
# 计算出总的客户
# 计算出总的金额
print('==============================4.客单价多少?==================================')
new_df = kpi_df.drop_duplicates('CustomerID')
total_ct = new_df['CustomerID'].count()
print('总的客户量:',total_ct)
total_money = kpi_df['money'].sum()
print('总的金额:', total_money)
print('KPI4 客单价:',(total_money/total_ct))

print('==============================5.用户消费行为分析==================================')
# RFM模型
'''
    R:最近一次消费日期
'''
import datetime

print('============================R==========================')
R_DATA = kpi_df.groupby(by='CustomerID')[['InvoiceDate']].max()
R_DATA['天数'] = datetime.datetime.today()- R_DATA['InvoiceDate']
# step1:计算组距
max_time = R_DATA['天数'].max()
min_time = R_DATA['天数'].min()
R_ZJ = (max_time-min_time)/5
team1 = (min_time, min_time+R_ZJ)
team2 = (min_time+R_ZJ ,min_time+2*R_ZJ)
team3 = (min_time+2*R_ZJ, min_time+3*R_ZJ)
team4 = (min_time+3*R_ZJ, min_time+4*R_ZJ)
team5 = (min_time+4*R_ZJ, max_time)
R_DATA.loc[(R_DATA['天数']>=team1[0]) & (R_DATA['天数']<team1[1]), 'R'] = 5
R_DATA.loc[(R_DATA['天数']>=team2[0]) & (R_DATA['天数']<team2[1]), 'R'] = 4
R_DATA.loc[(R_DATA['天数']>=team3[0]) & (R_DATA['天数']<team3[1]), 'R'] = 3
R_DATA.loc[(R_DATA['天数']>=team4[0]) & (R_DATA['天数']<team4[1]), 'R'] = 2
R_DATA.loc[(R_DATA['天数']>=team5[0]) & (R_DATA['天数']<=team5[1]), 'R'] = 1
R_DATA['R_S'] = R_DATA['R'].mean()
R_DATA.loc[R_DATA['R']>=R_DATA['R_S'],'R价值评估'] = '高'
R_DATA.loc[R_DATA['R']<R_DATA['R_S'],'R价值评估'] = '低'
R_DATA['客户'] = R_DATA.index
'''
    F:消费频率
'''
print('============================F==========================')
F_DATA = kpi_df.groupby(by='CustomerID')[['CustomerID']].count()
max_ci = F_DATA['CustomerID'].max()
min_ci = F_DATA['CustomerID'].min()
F_ZJ = (max_ci-min_ci)/5
team1 = (min_ci, min_ci+F_ZJ)
team2 = (min_ci+F_ZJ ,min_ci+2*F_ZJ)
team3 = (min_ci+2*F_ZJ, min_ci+3*F_ZJ)
team4 = (min_ci+3*F_ZJ, min_ci+4*F_ZJ)
team5 = (min_ci+4*F_ZJ, max_ci)
F_DATA.loc[(F_DATA['CustomerID']>=team1[0]) & (F_DATA['CustomerID']<team1[1]),'F'] = 1
F_DATA.loc[(F_DATA['CustomerID']>=team2[0]) & (F_DATA['CustomerID']<team2[1]),'F'] = 2
F_DATA.loc[(F_DATA['CustomerID']>=team3[0]) & (F_DATA['CustomerID']<team3[1]),'F'] = 3
F_DATA.loc[(F_DATA['CustomerID']>=team4[0]) & (F_DATA['CustomerID']<team4[1]),'F'] = 4
F_DATA.loc[(F_DATA['CustomerID']>=team5[0]) & (F_DATA['CustomerID']<=team5[1]),'F'] = 5
F_DATA['F_S'] = F_DATA['F'].mean()
F_DATA.loc[F_DATA['F']>=F_DATA['F_S'],'F价值评估'] = '高'
F_DATA.loc[F_DATA['F']<F_DATA['F_S'],'F价值评估'] = '低'
F_DATA['客户'] = F_DATA.index

'''
    M:消费金额
'''
print('============================M==========================')
M_DATA = kpi_df.groupby(by='CustomerID')[['money']].sum()
max_money = M_DATA['money'].max()
min_money = M_DATA['money'].min()
M_ZJ = (max_money-min_money)/5
team1 = (min_money, min_money+M_ZJ)
team2 = (min_money+M_ZJ ,min_money+2*M_ZJ)
team3 = (min_money+2*M_ZJ, min_money+3*M_ZJ)
team4 = (min_money+3*M_ZJ, min_money+4*M_ZJ)
team5 = (min_money+4*M_ZJ, max_money)

M_DATA.loc[(M_DATA['money']>=team1[0]) & (M_DATA['money']<team1[1]),'M'] = 1
M_DATA.loc[(M_DATA['money']>=team2[0]) & (M_DATA['money']<team2[1]),'M'] = 2
M_DATA.loc[(M_DATA['money']>=team3[0]) & (M_DATA['money']<team3[1]),'M'] = 3
M_DATA.loc[(M_DATA['money']>=team4[0]) & (M_DATA['money']<team4[1]),'M'] = 4
M_DATA.loc[(M_DATA['money']>=team5[0]) & (M_DATA['money']<=team5[1]),'M'] = 5
M_DATA['M_S'] = M_DATA['M'].mean()

M_DATA.loc[M_DATA['M']>=M_DATA['M_S'],'M价值评估'] = '高'
M_DATA.loc[M_DATA['M']<M_DATA['M_S'],'M价值评估'] = '低'
M_DATA['客户'] = M_DATA.index

rf_data = pd.merge(R_DATA,F_DATA)
RFM = pd.merge(rf_data, M_DATA)
NB_CUS = RFM[(RFM['R价值评估'] == "高") & (RFM['F价值评估'] == "高") & (RFM['M价值评估'] == "高")]
print('高价值客户')
print(NB_CUS)

医院数据分析案例

医院数据分析案例
	分析的需求:
    a、每日消费趋势
    b、每月消费趋势
    c、药品的消费趋势
    d、客单价
    注意:同一天同一个用户,代表一次消费
    
数据处理
    1、列名重命名
        购药时间 -> 销售日期
    2、缺失值处理
    3、类型转换
        读取数据时,需要以object类型读取数据(原样显示数据)
        001616528 - > 1e+xx
        销售日期 -> 日期格式
        销售数量:float
        应收金额:float
        实收金额:float
    4、异常值的处理
        df[df[销售数量]>0]
    5、选择子集(不需要)
    6、排序
        按照销售日期进行排序,重新定义索引
数据建模(kpi)
1、每日销售金额趋势图
	x:销售时间
    y:实收金额
    plot(x,y)
 
2、每月销售金额趋势图
	销售时间的月份进行分组聚合
    1	4444
    2	2222
    3	4444
    4	2222
    ...
    X: [1,2,3,4...]
    Y: [XX,XX,XX...]
 3、客单价
	df['实收金额'] = xxx
    同一天同一个人算作一次消费
    drop_去重(set=['销售日期','社保卡号'])
    总金额/总的消费次数
    
4、药品的销售趋势图(销量在前十的药品,并绘图)
	对药品进行分组聚合,计算销量
    排序分析
    [:10]
    		 销量
    阿司匹林   30
    九九感冒林  20
    y = df[销售数量]
	x = 药名
    bar(x,y)

车型数据分析案例

车型数据分析
	5个文件
    1、百度车型的真实搜索指数数据
    2、城市的id-城市名
    3、城市车型搜索指数的比重
    4、省份的id-省份名
    5、省份车型搜索指数的比重
 需求:
	计算各省每一个月的每一种车型的真是搜索指数
    901	山东	宾智 12	1000
    	     宾智 11  300
        计算出每一种车型的真是搜索指数
	902	贵州
	903	江西
    
    计算出每一种车型的真是搜索指数
	
    a.通过百度表计算出各种类型每一个月的真实搜索指数
    
    缤智 1 123
        2 456
        3 789
        4 110
    [keyword,month][[_index]].sum()
     
    b.通过省份比重表,计算占比值
       [keyword,month][prov_index].sum()
        2222
        901  12 272
             1  111
             2  333
                

1、百度的真实搜索指数
2、省份搜索指数比重
	BMW  12月  广东  600
         1月   山东  500
         1月   广东  400 
         ...
分析:计算每一种汽车每一个月各省的搜索指数(真实的数据)
思路:
	根据真实搜索指数,计算其比重占得数据值
    1、BMW   110000
             25000
    2、计算比例值
       BMW  1月  广东  700   700/1800=0.3    10000*0.3=3000
            1月  山东  500
            1月  江苏  600
  		    、、、
      1月总比重=700+500+600=1800      
    
3、城市搜索指数比重
	BMW  12  广东 深圳  400   400/3000
         12  广东 广州  500
        ...
    BMW  12 广东  3000  20000



import pandas as pd
import os
'''
    根据真实搜索指数表,计算每一种汽车每一个月的真实数据
'''
os.chdir('车辆数据')
print('--------------------1、真实搜索数据---------------')
baidu_df = pd.read_excel('baidu_index_0625.xlsx')
print(baidu_df.head())
print(baidu_df.info())
print('----------------------------------------')
baidu_df.dropna(inplace=True)
'''
    apply() 数据处理用的比较常见的函数
def chuli(x):
    return x.strip().upper()
    
lambda 匿名函数
    参数:返回值
lambda x:x.strip().upper()
'''
baidu_df['keyword'] = baidu_df['keyword'].apply(lambda x: x.strip().upper())
print(baidu_df.head())
baidu_df['date'] = baidu_df['date'].dt.strftime('%B')
print(baidu_df['date'])
print('--------------------------------------')
# 计算每一种汽车每一个月的真实搜索指数
# 方式1:分组聚合
# 方式2:透视表
baidu_index = baidu_df.groupby(by=['keyword', 'date'])[['_index']].sum()
print(baidu_index.head(10))
# baidu_index = baidu_df.pivot_table(values=['_index'],index=['keyword',baidu_df['date'].dt.month], aggfunc ="sum",)
# print(baidu_index.head(10))
print('--------------------2、省份比重数据---------------')
prov_df = pd.read_excel('province_index_0625.xlsx')
print(prov_df.info())
print(prov_df.count())
print(prov_df.shape)
# 字段统一化、日期处理
prov_df['keyword'] = prov_df['keyword'].apply(lambda x: x.strip().upper())
prov_df['date'] = prov_df['date'].apply(lambda x: x.split("|")[0])
prov_df['date'] = pd.to_datetime(prov_df['date']).dt.strftime('%B')
# 按照汽车品牌、月份,计算总比重
prov_sum = prov_df.groupby(by=['keyword', 'date'])[['prov_index']].sum()
# 表关联
prov_index = pd.merge(prov_df, prov_sum, on=['keyword', 'date'])
# 计算出pct:比例值
prov_index['pct'] = prov_index['prov_index_x']/prov_index['prov_index_y']
# 将百度真实搜索指数merge
prov_index_final = pd.merge(prov_index, baidu_index, on=['keyword', 'date'])
# 计算省份真实搜索指数
prov_index_final['prov_index_final'] = prov_index_final['pct']*prov_index_final['_index']
# 省份名字
prov_id = pd.read_excel('province_id.xlsx')
prov_index_final = pd.merge(prov_index_final, prov_id, left_on='prov', right_on='id')
# prov_index_final.to_excel('prov_index_final.xlsx')

print('--------------------3、城市比重数据---------------')
city_df = pd.read_excel('city_index_0625.xlsx')
# 字段统一化、日期处理
city_df['keyword'] = city_df['keyword'].apply(lambda x:x.strip().upper())
city_df['date'] = city_df['date'].apply(lambda x:x.split("|")[0])
city_df['date'] = pd.to_datetime(city_df['date']).dt.strftime('%B')

city_index = city_df.groupby(by=['keyword', 'date', 'prov'])[['city_index']].sum()

city_index2 = pd.merge(city_df, city_index, on=['keyword', 'date', 'prov'])

city_index_final = pd.merge(city_index2, prov_index_final, on=['keyword', 'date', 'prov'])
city_index_final.to_excel('test.xlsx')
# pct
# 真实指数

数据分析流程

数据清洗

1、子集的选择(选择列、添加列)
	
2、类型转换

3、异常值处理

4、缺失值处理

5、列名重命名

6、数据排序

7、字段统一化
  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
当心!“数据”一样会说谎! 例2:一所艺术学校,男生校服只有裤子款式(100%选裤子),而女生校服有裙子和裤子两种款式,经统计得知75%的女生选裙子款,25%选裤子款。今天进入校园,远远看到一个穿裤子的同学,他是男生的概率高?还是女生的概率高? 根据之前讲座交流的经验,对于第一次阅读这份数据的朋友,大都判断该同学更可能是男生。但如果我把所有的数据细节都透露出来,大家的结论会不会有变化呢? 例2的完整数据:艺术学校有女生900人,男生100人。看到一个穿裤子男生的概率为10% × 100% = 0.1,而看到一个穿裤子女生的概率为90% × 25% = 0.225,所以远远看到一个穿裤子的同学,他更有可能是女生! 例2只公布了似然概率,却隐藏了先验概率信息,使人的判断发生迷惑。什么是似然概率和先验概率呢?这涉及到统计学中的贝叶斯公式,描述一件事物发生的概率与两个概率相关,先验概率和似然概率。 数学表示:P(h1 | D) ∝ P(h) × P(D | h) 假设h代表我们对某个事物的判断,如果有两个判断(如某同学是男或是女),可以写为h1、h2。数据D表示观测到的统计数据。P(h|D)表示看到数据D后,判断假设h为真的概率。P(D|h)表示判断假设h为真的情况下,观测到数据D的概率。那么,贝叶斯定理说明了“观测到数据D,判断假设h为真的概率”,与“假设h天然出现的概率(P(h),称为先验概率)”和“假设h为真的情况下,观测到数据D的概率(P(D|h),称为似然概率)”成正比。 其实更准确的公式是 P(h | D) = P(h) ×P(D | h) /P(D),因为对于不同的假设h,数据D天然出现的概率P(D)均相同。其对判断“哪个假设h更可能是真的”不起作用,通常可以忽略。 回到艺术学校的例子,观测数据D =看到该同学穿的是裤子,假设 h1=他是男生,假设h2=她是女生。 因为艺术学校男生有100人、女生有900人,所以先验概率 P(h1) =10%、P(h2)=90%。 因为男生 100%会选择裤子,女生 25%会选择裤子,所以似然概率P(D | h1) =100%、P(D | h2) =25%。 那么,校园中随意看到了一位穿裤子的同学, 他是男生的概率近似:P(h1 | D) = P(h1) × P(D | h1) = 10% × 100% = 0.1 她是女生的概率近似:P(h2 | D) = P(h2) × P(D | h2) = 90% × 25% = 0.225 可见女生的概率要比是男生的概率高1倍多,这位穿裤子的同学更可能是女生! 注释:上述计算亦可以加上P(D)的考量,会得到精确的概率结果。女生有225人穿裤子,男生100人穿裤子,校园1000名学生中穿裤子的概率P(D)为32.5%。将上述近似值除以P(D),得到他是男生的概率为30.8%,她是女生的概率为69.2%,之间的差距比例是一致的(0.1/0.225 = 30.8%/69.2%),所以通常可以省去计算P(D)。 从这两个例子可见,隐藏一部分数据,只展示部分维度时,可能会诱导人们得出完全不同的结论。在某些场景下,更细节的相关信息是不能忽略的,隐藏了部分事实就相当于说谎。很多数据分析工作均需要全面细致的数据信息才能做出正确的判断。
### 回答1: Python数据分析实例源码是一些帮助数据科学家、工程师和数据分析师在Python平台上进行数据分析的代码示例。这些示例代码可以帮助数据分析人员快速理解和掌握Python数据分析的基本原理和技能。 这些源码示例可以涵盖从数据清洗、可视化、机器学习到人工智能等领域的数据分析问题,例如: 1. 数据清洗:包括数据预处理、数据格式化、数据过滤等等,比如清洗数据、去除错误的数据等。 2. 数据可视化: 包括各种类型的图表和地图展示,比如条形图、饼图和地图可视化等。 3. 机器学习:在Python 中使用机器学习模型进行预测和分类,比如逻辑回归、朴素贝叶斯分类器和决策树等。 4. 深度学习:使用深度学习技术处理大量的数据,比如使用神经网络进行图像识别、自然语言处理和语音识别等任务。 总之,Python数据分析实例源码可以帮助学习Python的数据科学家更快速地进行数据分析和应用,促进了Python在数据分析领域的广泛应用。 ### 回答2: Python数据分析实例源码提供了丰富的数据分析案例及源代码,并可以通过学习这些实例更好地理解Python在数据分析领域的应用。这些实例涉及到的领域包括数据预处理、数据可视化及机器学习等,并可以帮助您更好地处理和分析数据。 其中包括常用的数据处理和分析库,如Pandas和Numpy,它们可以帮助您处理和操作数据集。同时也包括了可视化库,如Matplotlib和Seaborn。这些库可以帮助您更好地理解数据集的分布和相关性,以便更好地进行数据探索和分析。 Python数据分析实例源码还包括一些机器学习相关的案例,如监督学习、无监督学习、深度学习等。它们可以帮助您了解如何使用Python在机器学习领域应用最新技术。 通过Python数据分析实例源码的学习,您可以更好地了解Python在数据分析领域的应用,并且可以通过实例代码更加深入的理解Python的使用方法。这些实例不仅可以帮助您在处理数据时更加得心应手,还可以帮助您在解决实际问题时更加有效地使用Python。 ### 回答3: Python数据分析实例源码是指用Python编写的代码,用于解决数据分析中的问题或实现数据分析算法。这类源码通常包括数据读取、数据预处理、数据分析和可视化等功能,在实现数据分析的整个过程中发挥着重要的作用。 对于数据读取和预处理,Python提供了强大的Pandas库来处理常见的数据类型,例如CSV格式、Excel格式、JSON格式等,并且Pandas库支持基本的数据清洗、处理缺失值、数据变换等功能。而对于数据分析和可视化,Python则提供了Numpy、Matplotlib、Seaborn等库,这些库可以帮助我们进行统计分析和数据可视化,并且具有很高的灵活性和扩展性,可以满足不同场景下的数据分析需求。 以一个简单的数据分析实例为例,给定一份学生成绩的CSV文件,我们希望分析每个学生各科成绩的平均分、标准差等统计指标,并且绘制出每个学生的成绩分布图。以下是Python数据分析实例的源码: ```python import pandas as pd import matplotlib.pyplot as plt import seaborn as sns # 读取数据 df = pd.read_csv('scores.csv') # 计算各科平均分和标准差 df['mean'] = df.mean(axis=1) df['std'] = df.std(axis=1) # 绘制成绩分布图 for col in df.columns[:-2]: sns.displot(df, x=col, hue='name', kind='kde') plt.title('Distribution of %s' % col) plt.savefig('%s.png' % col, dpi=300) plt.show() ``` 该源码中,我们首先使用Pandas的read_csv函数读取CSV文件,并对数据进行预处理,计算各科平均分和标准差,并将计算结果保存在DataFrame中。然后,我们使用Seaborn库绘制出各科成绩的分布图,并通过循环批量保存成绩分布图像。最后,我们通过Matplotlib库展示图像。 总之,Python数据分析实例源码对于从事数据分析工作的人来说是非常重要的工具之一,可以帮助分析师更高效更快捷地解决实际问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值