目录
1.静态计算图(Static Computation Graph)
2.动态计算图(Dynamic Computation Graph)
一.计算图基本概念
计算图:是指将计算过程用图形表示出来,图形是指数据结构图,通过节点和边表示(连接节点的直线称为"边")。计算图是一种有向无环图(DAG),确保了计算的顺序性和结果的确定性。
节点:在神经网络中,输入层,隐藏层和输出层各个操作都可以表示为节点。
边:边用来连接节点,表示数据流或依赖关系,在深度学习中,边通常表示张量(多维数组)的传递。
正向传播:从左向右传递正方向上的传播,即从计算图的出发点到结束点传播。
反向传播:从右向左传播,反向传播在导数计算中很重要,用于梯度计算。根据损失函数计算输出结果与真实标签之间的误差,然后利用链式法则,逐个计算每个计算节点对应的输入的梯度,最终得到参数的梯度信息。
二.计算图的类型
1.静态计算图(Static Computation Graph)
在执行前完全定义好的计算图。所有的操作(ops)和数据流(包括模型的权重、输入数据等)在程序开始运行之前就已经确定。优点是:优化和执行效率高,