深度学习入门- 计算图(Computation Graph)

目录

一.计算图基本概念

二.计算图的类型

1.静态计算图(Static Computation Graph)

2.动态计算图(Dynamic Computation Graph)

三. 计算图的构建和训练

1.构建计算图

2. 训练模型

四.计算图的特性

五.碎碎念

一.计算图基本概念

       计算图:是指将计算过程用图形表示出来,图形是指数据结构图,通过节点和边表示(连接节点的直线称为"边")。计算图是一种有向无环图(DAG),确保了计算的顺序性和结果的确定性。

      节点:在神经网络中,输入层,隐藏层和输出层各个操作都可以表示为节点。

       边:边用来连接节点,表示数据流或依赖关系,在深度学习中,边通常表示张量(多维数组)的传递。

       正向传播:从左向右传递正方向上的传播,即从计算图的出发点到结束点传播。

       反向传播:从右向左传播,反向传播在导数计算中很重要,用于梯度计算。根据损失函数计算输出结果与真实标签之间的误差,然后利用链式法则,逐个计算每个计算节点对应的输入的梯度,最终得到参数的梯度信息。

二.计算图的类型

1.静态计算图(Static Computation Graph)

      在执行前完全定义好的计算图。所有的操作(ops)和数据流(包括模型的权重、输入数据等)在程序开始运行之前就已经确定。优点是:优化和执行效率高,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值