Bobo老师机器学习笔记第九课-如何处理多分类任务?

本文介绍了多分类任务的两种主要策略:OvR(one-vs-rest)和OvO(one-vs-one)。在多类别分类中,OvR通过将一个类别与其他所有类别对比来确定分类,而OvO则为每对类别构建分类器。在sklearn库中,逻辑回归的`multi_class`参数用于指定多类别分类方式,并提供了OneVsOneClassifier和OneVsRestClassifier实现这两种策略。
摘要由CSDN通过智能技术生成

1、什么是多分类任务?

   针对多类问题的分类中,具体讲有两种,即multiclass classification和multilabel classification

multiclass是指分类任务中包含不止一个类别时,每条数据仅仅对应其中一个类别,不会对应多个类别。

multilabel是指分类任务中不止一个分类时,每条数据可能对应不止一个类别标签,例如一条新闻,可以被划分到多个板块。

无论是multiclass,还是multilabel,做分类时都有两种策略,一个是one-vs-​the-rest(one-vs-all),一个是one-vs-one。

简称就是OvR和OvO

2、OvR和OvO的原理是什么?

OvR: 假设有n个类别,选择其中一个作为1类,剩下的n-1作为一类。进行n次分类,选择分类得分最高的。 

 

OvO:  同样假设有n个类别,则会针对两两类别建立二项分类器,得到k=n*(n-1)/2个分类器。 然后进行K次分类,选择最高的;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值