1、什么是多分类任务?
针对多类问题的分类中,具体讲有两种,即multiclass classification和multilabel classification。
multiclass是指分类任务中包含不止一个类别时,每条数据仅仅对应其中一个类别,不会对应多个类别。
multilabel是指分类任务中不止一个分类时,每条数据可能对应不止一个类别标签,例如一条新闻,可以被划分到多个板块。
无论是multiclass,还是multilabel,做分类时都有两种策略,一个是one-vs-the-rest(one-vs-all),一个是one-vs-one。
简称就是OvR和OvO
2、OvR和OvO的原理是什么?
OvR: 假设有n个类别,选择其中一个作为1类,剩下的n-1作为一类。进行n次分类,选择分类得分最高的。
OvO: 同样假设有n个类别,则会针对两两类别建立二项分类器,得到k=n*(n-1)/2个分类器。 然后进行K次分类,选择最高的;