23、OpenMV使用tensorflow 1.15.0训练模型mobilenet_v1_1.0_224进行车辆识别

本文介绍了如何使用OpenMV调用Tensorflow的tflite进行车辆识别。作者尝试了不同版本的MobileNet模型,并最终成功使用Tensorflow 1.15训练了MobileNet_v1_1.0_224模型。文章详细记录了从数据集准备、训练、验证到生成tflite模型并测试在OpenMV上的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基本思想:希望使用OpenMV调用Tensorflow 的tflite进行目标检测

 一、下载window的Openmv的开发工具,软件下载

https://singtown.com/openmv/

安装软件之后,进行链接和运行测试即可

测试的画面

 帧率还是蛮快的

46.6321
46.6132
46.6284
46.6431
46.6249
46.6392
46.6216
46.6356
46.6185
46.6321
46.6156
46.6289
46.6418
46.6258

 三、本想使用49、TensorFlow训练模

OpenMV可以用于垃圾识别。要进行垃圾识别,您可以按照以下步骤操作: 1.OpenMV通过配套数据线与电脑连接\[1\]。 2. 将Edge Impulse网站训练网站的3个文件复制粘贴到OpenMV的U盘\[1\]。 3. 打开OpenMV IDE软件,将OpenMV生成的U盘内的main.py文件拖至OpenMV IDE编辑器处打开该文件\[2\]。 4.OpenMV IDE中编写代码来实现垃圾识别功能。具体的代码实现可以根据您的需求和训练模型来进行编写。 5. 运行代码,观察模型的效果\[1\]。 通过以上步骤,您可以使用OpenMV进行垃圾识别。请注意,具体的代码实现和模型训练需要根据您的具体需求和数据集来进行调整和优化。 #### 引用[.reference_title] - *1* [基于云端训练深度学习](https://blog.csdn.net/weixin_52235742/article/details/118995302)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [OpenMV 从入手到跑TensorFlow Lite神经网络进行垃圾分类](https://blog.csdn.net/qq_36300069/article/details/118071444)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sxj731533730

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值