【课堂笔记】1_书生浦语大模型全链路开源开放体系

【课堂笔记】1_书生浦语大模型全链路开源开放体系

课程资料来源:书生·浦语大模型实战营

大模型成为了热门关键词,尤其是chatGPT发布两个月月活破亿

AI的发展路线:从专用模型(特定任务->一个模型解决一个问题)->通用大模型(一个模型应对多种任务、多种模态)

书生·浦语大模型系列:轻量级(7B)、中量级(20B)、重量级(123B)

从模型到应用:智能客服、个人助手、行业应用

模型到应用:
在这里插入图片描述

全链条开源开放体系:数据(书生万卷)、预训练(Intern-Train)、微调(XTuner)、部署(LMDeploy)、评测(OpenCompass)、应用(Lagent AgentLego)

数据

书生万卷1.0

总2TB,包括文本数据、图像-文本数据、视频数据

  • 多模态融合
  • 精细化处理
  • 价值观对齐

OpenDataLab

模态30+、数据集5400+、数据大小80TB

提供多种服务和工具:灵活检索、高速下载、智能标注、高效采集

预训练

高可扩展:8卡-千卡

性能优化

兼容主流:HuggingFace等

开箱即用:支持多种规格语言模型

微调

增量续训

使用场景:让基座模型学习到一些新知识,如某个垂类领域知识

训练数据:文章、书籍、代码等

有监督微调

使用场景:让模型学会理解和遵循各种指令,或者注入少量领域知识

训练数据:高质量的对话、问答数据

XTuner

多种微调算法

适配多种开源生态

自动优化加速

适配多种硬件:NVIDIA 20以上系列

8GB显存即可微调7B模型

评测

在这里插入图片描述

OpenCompass

在这里插入图片描述

丰富模型支持:开源模型、API模型一站式评测

分布式高效评测:支持千亿参数模型在海量数据集上分布式评测

便捷的数据集接口:支持社区用户根据自身需求快速添加自定义数据集

敏捷的能力迭代:每周更新大模型能力榜单,每月提升评测工具能力

部署

大语言模型特点

内存开销巨大

  • 庞大的参数量
  • 采用自回归生成token,需要缓存k/v

动态Shape

  • 请求数不固定
  • token逐个生成,且数量不定

模型结构相对简单

  • transformer结构,大部分是decoder-only

技术挑战

设备

  • 低存储设备(消费级显卡、移动端等)如何部署?

推理

  • 如何加速token的生成速度
  • 如何解决动态shape,让推理可以不间断
  • 如何有效管理和利用内存

服务

  • 提升系统整体吞吐量
  • 降低请求的平均响应时间

部署方案

技术点

  • 模型并行
  • 低比特量化
  • Attention优化
  • 计算和访存优化
  • Continuous Batching

LMDeploy

高效推理引擎

  • 持续批处理技巧
  • 深度优化的低比特计算kernel
  • 模型并行
  • 高效的k/v缓存管理机制

完备易用的工具链

  • 量化、推理、服务全流程
  • 无缝对接OpenCompass评测推理精度
  • 和OpenAl接口高度兼容的APl server

智能体

大语言模型的局限性

  • 最新信息和知识的获取
  • 回复的可靠性
  • 数学计算
  • 工具使用和交互

在这里插入图片描述

Lagent

在这里插入图片描述

AgentLego

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值