转自: http://www.physixfan.com/archives/2605
作者: physixfan
最近在如何数值上计算湍流能谱(turbulent energy spectrum)上面卡了好几天,现在终于问到了做过的人看了相应的书明白了正确的算法。写出来以供自己留个记录以及给搜索引擎喂食吧。
问题定义:现在已知速度场 u(x) ,求能谱 Ek(k) 。(我研究的问题是2D的,所以以下都按照2D来写了,推广到3D也是非常容易的事情。)
能谱的含义是动能在k空间上的分布函数,其对k进行积分之后将得到总的动能。其定义为:
其中 Φii=Tr(Φij) (其中ij取12,如果是3D情况则ij取123)
其中 Φij 为关联函数(correlation function)的傅里叶变换:
其中 F{.} 是傅里叶变换的记号,而 Rij 为关联函数:
其中 ⟨.⟩ 表示对位置 x 的平均。
至此,根据定义,理论上如何用速度场 u(x) 求能谱 Ek(k) 已经非常清楚了。但是问题是,根据这个定义进行数值计算的话,2D情况下单单是计算 Rij(r) 的时间复杂度就已经是 O(n4) 了!这是因为 Rij(r) 本来就是一个二维的场量,而计算其中每个分量又需要对整个 x 做平均。如果是1024*1024的格点,这个时间复杂度是无论如何也算不出来了。。。
正确的算法是这样的:
根据 Cross-Correlation Theorem,或者其特列 Wiener-Khinchin Theorem,cross-correlation 等价于傅里叶空间中的乘积!大一时候微积分应该是学过这个定理的,没想到这么多年后居然用到了...因此我们可以直接简便地计算关联函数的傅里叶变换:
其中 ∗ 表示复共轭。
因此正确的算法是,先计算速度场的傅里叶变换 u(k) ,然后用上式来计算 Φij(k) ,然后就可以得到 Ek(k) 了。总时间复杂度的限制在傅里叶变换上,最后的总时间复杂度将是 O(n2logn) 。
注意:先计算动能场 E(x)=ui(x)ui(x) 然后直接对它进行傅里叶变换是得不到能谱的。
参考资料:
Pope, Turbulent Flows, 1st Edition, Page 219~221.
Press, Numerical Recipes in C, 2nd Edition, Page 545.