不可压流体的动量方程如式(1)所示,对其进行系综平均,平均后的方程为式(2),即RANS方程,对式(1)与式(2)做差,得到脉动运动方程 (3)
∂
u
i
∂
t
+
∂
u
i
u
j
∂
x
j
=
−
1
ρ
∂
p
∂
x
i
+
v
∂
2
u
i
∂
x
j
2
(
1
)
\frac{\partial u_{i}}{\partial t}+\frac{\partial u_{i} u_{j}}{\partial x_{j}}=-\frac{1}{\rho} \frac{\partial p}{\partial x_{i}}+v \frac{\partial^{2} u_{i}}{\partial x_{j}^{2}} (1)
∂t∂ui+∂xj∂uiuj=−ρ1∂xi∂p+v∂xj2∂2ui(1)
∂
u
ˉ
i
∂
t
+
∂
u
ˉ
i
u
ˉ
j
∂
x
j
=
−
1
ρ
∂
p
ˉ
∂
x
i
+
v
∂
2
u
ˉ
i
∂
x
j
2
−
∂
u
i
′
u
j
′
‾
∂
x
j
(
2
)
\frac{\partial \bar{u}_{i}}{\partial t}+\frac{\partial \bar{u}_{i} \bar{u}_{j}}{\partial x_{j}}=-\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_{i}}+v \frac{\partial^{2} \bar{u}_{i}}{\partial x_{j}^{2}}-\frac{\partial \overline{u_{i}^{\prime} u_{j}^{\prime}}}{\partial x_{j}} (2)
∂t∂uˉi+∂xj∂uˉiuˉj=−ρ1∂xi∂pˉ+v∂xj2∂2uˉi−∂xj∂ui′uj′(2)
∂
u
i
′
∂
t
+
u
ˉ
j
∂
u
i
′
∂
x
j
+
u
j
′
∂
u
ˉ
i
∂
x
j
=
−
1
ρ
∂
p
′
∂
x
i
+
v
∂
2
u
i
′
∂
x
j
2
−
∂
∂
x
j
(
u
i
′
u
j
′
−
u
i
′
u
j
′
‾
)
(
3
)
\frac{\partial u_{i}^{\prime}}{\partial t}+\bar{u}_{j} \frac{\partial u_{i}^{\prime}}{\partial x_{j}}+u_{j}^{\prime} \frac{\partial \bar{u}_{i}}{\partial x_{j}}=-\frac{1}{\rho} \frac{\partial p^{\prime}}{\partial x_{i}}+v \frac{\partial^{2} u_{i}^{\prime}}{\partial x_{j}^{2}}-\frac{\partial}{\partial x_{j}}\left(u_{i}^{\prime} u_{j}^{\prime}-\overline{u_{i}^{\prime} u_{j}^{\prime}}\right)(3)
∂t∂ui′+uˉj∂xj∂ui′+uj′∂xj∂uˉi=−ρ1∂xi∂p′+v∂xj2∂2ui′−∂xj∂(ui′uj′−ui′uj′)(3)
u
i
′
u_{i}^{\prime}
ui′与式(3)相乘后系综平均,并定义湍动能(TKE)为
k
=
1
2
u
k
′
u
k
′
‾
=
1
2
(
u
′
2
‾
+
v
′
2
‾
+
w
′
2
‾
)
(
4
)
k=\frac{1}{2} \overline{u_{k}^{\prime} u_{k}^{\prime}}=\frac{1}{2}\left(\overline{u^{\prime 2}}+\overline{v^{\prime 2}}+\overline{w^{\prime 2}}\right)(4)
k=21uk′uk′=21(u′2+v′2+w′2)(4)
则湍动能输运方程为
∂
k
∂
t
+
u
ˉ
k
∂
k
∂
x
k
=
−
u
i
′
u
k
′
‾
∂
u
ˉ
i
∂
x
k
−
∂
∂
x
k
(
1
ρ
p
′
u
k
′
‾
+
k
′
u
k
′
‾
−
v
∂
k
∂
x
k
)
−
v
∂
u
i
′
∂
x
k
∂
u
i
′
∂
x
k
‾
(
5
)
\frac{\partial k}{\partial t}+\bar{u}_{k} \frac{\partial k}{\partial x_{k}}=-\overline{u_{i}^{\prime} u_{k}^{\prime}} \frac{\partial \bar{u}_{i}}{\partial x_{k}}-\frac{\partial}{\partial x_{k}}\left(\frac{1}{\rho} \overline{p^{\prime} u_{k}^{\prime}}+\overline{k^{\prime} u_{k}^{\prime}}-v \frac{\partial k}{\partial x_{k}}\right)-v \overline{\frac{\partial u_{i}^{\prime}}{\partial x_{k}} \frac{\partial u_{i}^{\prime}}{\partial x_{k}}}(5)
∂t∂k+uˉk∂xk∂k=−ui′uk′∂xk∂uˉi−∂xk∂(ρ1p′uk′+k′uk′−v∂xk∂k)−v∂xk∂ui′∂xk∂ui′(5)
其中
P
k
=
−
u
′
i
u
′
k
‾
∂
u
ˉ
i
∂
x
k
{P_k} = - \overline {{{u'}_i}{{u'}_k}} \frac{{\partial {{\bar u}_i}}}{{\partial {x_k}}}
Pk=−u′iu′k∂xk∂uˉi为湍动能生成项,表示了由于剪切作用引起能量从平均动能向脉动动能传递;
D
k
=
∂
∂
x
k
(
1
ρ
p
′
u
′
k
‾
+
k
′
u
′
k
‾
−
ν
∂
k
∂
x
k
)
{D_k} = \frac{\partial }{{\partial {x_k}}}\left( {\frac{1}{\rho }\overline {p'{{u'}_k}} + \overline {k'{{u'}_k}} - \nu \frac{{\partial k}}{{\partial {x_k}}}} \right)
Dk=∂xk∂(ρ1p′u′k+k′u′k−ν∂xk∂k)为扩散项,表示了湍流的扩散效应;
ε
=
ν
∂
u
′
i
∂
x
k
∂
u
′
i
∂
x
k
‾
\varepsilon = \nu \overline {\frac{{\partial {{u'}_i}}}{{\partial {x_k}}}\frac{{\partial {{u'}_i}}}{{\partial {x_k}}}}
ε=ν∂xk∂u′i∂xk∂u′i为耗散项,表示由于粘性而引起的湍动能的耗散率。
湍流公式推导系列——(一) 不可压湍动能方程的推导与含义
于 2022-05-26 23:10:10 首次发布