湍流公式推导系列——(一) 不可压湍动能方程的推导与含义

不可压流体的动量方程如式(1)所示,对其进行系综平均,平均后的方程为式(2),即RANS方程,对式(1)与式(2)做差,得到脉动运动方程 (3)
∂ u i ∂ t + ∂ u i u j ∂ x j = − 1 ρ ∂ p ∂ x i + v ∂ 2 u i ∂ x j 2 ( 1 ) \frac{\partial u_{i}}{\partial t}+\frac{\partial u_{i} u_{j}}{\partial x_{j}}=-\frac{1}{\rho} \frac{\partial p}{\partial x_{i}}+v \frac{\partial^{2} u_{i}}{\partial x_{j}^{2}} (1) tui+xjuiuj=ρ1xip+vxj22ui(1)
∂ u ˉ i ∂ t + ∂ u ˉ i u ˉ j ∂ x j = − 1 ρ ∂ p ˉ ∂ x i + v ∂ 2 u ˉ i ∂ x j 2 − ∂ u i ′ u j ′ ‾ ∂ x j ( 2 ) \frac{\partial \bar{u}_{i}}{\partial t}+\frac{\partial \bar{u}_{i} \bar{u}_{j}}{\partial x_{j}}=-\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_{i}}+v \frac{\partial^{2} \bar{u}_{i}}{\partial x_{j}^{2}}-\frac{\partial \overline{u_{i}^{\prime} u_{j}^{\prime}}}{\partial x_{j}} (2) tuˉi+xjuˉiuˉj=ρ1xipˉ+vxj22uˉixjuiuj(2)
∂ u i ′ ∂ t + u ˉ j ∂ u i ′ ∂ x j + u j ′ ∂ u ˉ i ∂ x j = − 1 ρ ∂ p ′ ∂ x i + v ∂ 2 u i ′ ∂ x j 2 − ∂ ∂ x j ( u i ′ u j ′ − u i ′ u j ′ ‾ ) ( 3 ) \frac{\partial u_{i}^{\prime}}{\partial t}+\bar{u}_{j} \frac{\partial u_{i}^{\prime}}{\partial x_{j}}+u_{j}^{\prime} \frac{\partial \bar{u}_{i}}{\partial x_{j}}=-\frac{1}{\rho} \frac{\partial p^{\prime}}{\partial x_{i}}+v \frac{\partial^{2} u_{i}^{\prime}}{\partial x_{j}^{2}}-\frac{\partial}{\partial x_{j}}\left(u_{i}^{\prime} u_{j}^{\prime}-\overline{u_{i}^{\prime} u_{j}^{\prime}}\right)(3) tui+uˉjxjui+ujxjuˉi=ρ1xip+vxj22uixj(uiujuiuj)(3)
u i ′ u_{i}^{\prime} ui与式(3)相乘后系综平均,并定义湍动能(TKE)为
k = 1 2 u k ′ u k ′ ‾ = 1 2 ( u ′ 2 ‾ + v ′ 2 ‾ + w ′ 2 ‾ ) ( 4 ) k=\frac{1}{2} \overline{u_{k}^{\prime} u_{k}^{\prime}}=\frac{1}{2}\left(\overline{u^{\prime 2}}+\overline{v^{\prime 2}}+\overline{w^{\prime 2}}\right)(4) k=21ukuk=21(u2+v2+w2)(4)
则湍动能输运方程为
∂ k ∂ t + u ˉ k ∂ k ∂ x k = − u i ′ u k ′ ‾ ∂ u ˉ i ∂ x k − ∂ ∂ x k ( 1 ρ p ′ u k ′ ‾ + k ′ u k ′ ‾ − v ∂ k ∂ x k ) − v ∂ u i ′ ∂ x k ∂ u i ′ ∂ x k ‾ ( 5 ) \frac{\partial k}{\partial t}+\bar{u}_{k} \frac{\partial k}{\partial x_{k}}=-\overline{u_{i}^{\prime} u_{k}^{\prime}} \frac{\partial \bar{u}_{i}}{\partial x_{k}}-\frac{\partial}{\partial x_{k}}\left(\frac{1}{\rho} \overline{p^{\prime} u_{k}^{\prime}}+\overline{k^{\prime} u_{k}^{\prime}}-v \frac{\partial k}{\partial x_{k}}\right)-v \overline{\frac{\partial u_{i}^{\prime}}{\partial x_{k}} \frac{\partial u_{i}^{\prime}}{\partial x_{k}}}(5) tk+uˉkxkk=uiukxkuˉixk(ρ1puk+kukvxkk)vxkuixkui(5)
其中 P k = − u ′ i u ′ k ‾ ∂ u ˉ i ∂ x k {P_k} = - \overline {{{u'}_i}{{u'}_k}} \frac{{\partial {{\bar u}_i}}}{{\partial {x_k}}} Pk=uiukxkuˉi为湍动能生成项,表示了由于剪切作用引起能量从平均动能向脉动动能传递; D k = ∂ ∂ x k ( 1 ρ p ′ u ′ k ‾ + k ′ u ′ k ‾ − ν ∂ k ∂ x k ) {D_k} = \frac{\partial }{{\partial {x_k}}}\left( {\frac{1}{\rho }\overline {p'{{u'}_k}} + \overline {k'{{u'}_k}} - \nu \frac{{\partial k}}{{\partial {x_k}}}} \right) Dk=xk(ρ1puk+kukνxkk)为扩散项,表示了湍流的扩散效应; ε = ν ∂ u ′ i ∂ x k ∂ u ′ i ∂ x k ‾ \varepsilon = \nu \overline {\frac{{\partial {{u'}_i}}}{{\partial {x_k}}}\frac{{\partial {{u'}_i}}}{{\partial {x_k}}}} ε=νxkuixkui为耗散项,表示由于粘性而引起的湍动能的耗散率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值