周末反思录1.0

2017年9月24日
MIL day ?

9.23 总结

上午主要进行了challenger上数据集的下载,导师对数据的重视性可见一斑;另外,安装了windows版本的matlab,并对安装过程进行了完整的总结,压缩并保存到U盘上,电脑上仍旧有备份。
下午主要通过matlab查看从杭老师那里拿到的数据,将.mat格式数据进行归一化后,然后显示出来,不同通道的显示问题将其做了一个for循环和pause延时。代码如下:

%matlab程序
for x = 1:3:196
    data_x = indian_pines_corrected(:,:,x:x+2);
    data_x_normal = (data_x-min(min(min(data_x))))/(max(max(max(data_x)))-min(min(min(data_x)))); % 简单的归一化处理
    imshow(data_x_normal)
    disp(x)
    disp('have showed')
    pause(1)
end
disp('All channels showed!')

% data_label = indian_pines_gt(); %ground truth显示
% imshow(data_label)

如何利用这些数据目前还是一个问题啊……
晚上装好了散热风扇;然后重新在师兄电脑上run之前的FCN代码,看来我电脑出现的resourceexhaustederror是因为显存不够,(OOM),师兄电脑跑到了2000次epoch后loss保持在3左右,所以就不训了毕竟数据集也不对,不过保存的模型参数一个大概有2g,挺吃惊的!

明天的任务,开始阅读fc-densenet代码,如果可能的话还想blog一下paper(fc-densenet);另外,对今天下载的比赛数据以及杭老师的数据,还是需要搞懂一下存放格式。

9.24总结

果然是,计划不如变化。
今天基本都在搞challenger里的分类问题,试着用别的模型放到这里来用;首先是,json格式的数据怎么用python读取,通过json包,load,然后选择某一索引对应的元素,image_id,label_id,进行切片操作,或单独将image_id和label_id放入单独的变量对象即list中,数据读取这个问题解决了,包括将label的具体值转化为一个batch×1*80(所有的类);如61就是一个1*80的向量,第61个元素是1,其他都是0。

然后需要解决的是,如何将图片转化为数据供python进行处理,一开始采用skimage,能够读取图片为数据,但是显示时候有问题,所以后面又采用了matplotlib模块进行显示;具体如下:

"""粘贴部分代码,以下为读取图片的像素信息"""
pixel = io.imread(data_dir + '/scene_train_images_20170904/' + data_image[FLAGS.ID])
# print 'the pixel values are',pixel/255.0
pixel = pixel/255.0
print 'label is:',data_label[FLAGS.ID]
print pixel.shape

plot.imshow(pixel)
plot.show()

接下来的问题,就是如何将不同尺寸的图片进行crop为统一尺寸,以便后期处理;然后再加上train的代码,目前就是这样的思路。问题是如何出现的?只有一步步往下做才会知道,这种通过问题去解决问题的方式,简直是太棒了!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值