高等数学学习笔记 DAY1

映射与函数

映射的概念

定义

X , Y X,Y X,Y 是两个非空集合,如果存在一个法则 f f f,使得对 X X X 中每一个元素 x x x,按法则 f f f,在 Y Y Y 中有位移确定的元素 y y y 与之对应,那么称 f f f 为从 X X X Y Y Y映射,记作: f : X → Y , f:X\to Y, f:XY,
其中 y y y 称为元素 x x x(在映射 f f f 下)的,并记作 f ( x ) f(x) f(x),即: y = f ( x ) , y=f(x), y=f(x),而元素 x x x 称为元素 y y y(在映射 f f f 下)的一个原象;集合 X X X 称为映射 f f f 的定义域,记作 D f D_f Df,即 D f = X D_f=X Df=X; X X X 中所有的 元素的像所组成的集合称为映射 f f f 的值域,记作 R f R_f Rf f ( X ) f(X) f(X),即 R f = f ( X ) = { f ( x ) ∣ x ∈ X } . R_f=f(X)=\{f(x)|x \in X\}. Rf=f(X)={f(x)xX}.

注意点

  1. 必须具备的三要素:集合 X X X,即定义域 D f = X D_f=X Df=X;集合 Y Y Y,即值域的范围: R f ⊂ Y R_f\subset Y RfY;对应法则 f f f,使得每个 x ∈ X x\in X xX,有唯一确定的 y = f ( x ) y=f(x) y=f(x) 与之对应.
  2. 对于每个 x ∈ X x\in X xX,元素 x x x 的像 y y y 是唯一的;而对于每个 y ∈ R f y\in R_f yRf,元素 y y y 的原像不一定为唯一的;映射 f f f 的值域 R f R_f Rf Y Y Y 的一个子集,即 R f ⊂ Y R_f \subset Y RfY,不一定 R f = Y R_f=Y Rf=Y.

例1

f : [ − π 2 , π 2 ] → [ − 1 , 1 ] f:[-\frac{\pi}{2},\frac{\pi}{2}]\to [-1,1] f:[2π,2π][1,1],对于每个 x ∈ [ − π 2 , π 2 ] x\in[-\frac{\pi}{2},\frac{\pi}{2}] x[2π,2π], f ( x ) = sin ⁡ x f(x)=\sin{x} f(x)=sinx. f f f 是一个映射,其定义域为 D f = [ − π 2 , π 2 ] D_f=[-\frac{\pi}{2},\frac{\pi}{2}] Df=[2π,2π],值域 R f = [ − 1 , 1 ] R_f=[-1,1] Rf=[1,1].

如果 Y Y Y 中的任意一元素 y y y 都是 X X X 中某个元素的像,则称 f f f X X X Y Y Y 上的映射满射;若 X X X 中任意两个不同元素 x 1 ≠ x 2 x_1\not=x_2 x1=x2,它们的像 f ( x 1 ) ≠ f ( x 2 ) f(x_1)\not=f(x_2) f(x1)=f(x2),则称 f f f X X X Y Y Y单射,如果映射 f f f 既是单射又是满射,则称 f f f一一映射(或双射).

映射又称算子.根据集合 X , Y X,Y X,Y 的不同情形,在不同的数学分支中,映射有不同的名称.例如:泛函,变换,函数.

逆映射与复合映射

逆映射

f f f X X X Y Y Y 的单射,对于每个 y ∈ R f y\in R_f yRf,有唯一的 KaTeX parse error: Undefined control sequence: \inX at position 2: x\̲i̲n̲X̲,适合和 f ( x ) = y f(x)=y f(x)=y,我们可以定义一个从 R f R_f Rf X X X 的新映射 g g g,即 g : R f → X g:R_f\to X g:RfX,对于每个 y ∈ R f y\in R_f yRf,规定 g ( y ) = x g(y)=x g(y)=x,这 x x x 满足 f ( x ) = y f(x)=y f(x)=y,这个映射 g g g 称为 f f f 的逆映射,记作 f − 1 f^{-1} f1,其定义域 D f − 1 = R f D_{f^{-1}}=R_f Df1=Rf,值域 R f − 1 = X R_{f^{-1}}=X Rf1=X.

只有单射才存在逆映射.例1中的映射 f f f 存在逆映射 f − 1 f^{-1} f1,这个逆映射就是反正弦函数的主值 f − 1 ( x ) = arcsin ⁡ x , x ∈ [ − 1 , 1 ] f^{-1}(x)=\arcsin{x},x\in[-1,1] f1(x)=arcsinx,x[1,1],其定义域 D f − 1 = [ − 1 , 1 ] D_{f^{-1}}=[-1,1] Df1=[1,1],值域 R f − 1 = [ − π 2 , π 2 ] R_{f^{-1}}=[-\frac{\pi}{2},\frac{\pi}{2}] Rf1=[2π,2π].

复合映射

设有两个映射 g : X → Y 1 , g:X\to Y_1, g:XY1, f : Y 2 → Z , f:Y_2\to Z, f:Y2Z,其中 Y 1 ⊂ Y 2 Y_1\subset Y_2 Y1Y2,则由映射 g g g f f f 可以得出一个从 X X X Z Z Z 的对应法则,这个法则确定了一个从 X X X Z Z Z 的映射,这个映射称为 g g g f f f复合映射,记作 f ∘ g f\circ g fg,即 f ∘ g : X → Z , ( f ∘ g ) ( x ) = f [ f ( x ) ] , x ∈ X . f\circ g:X\to Z,(f\circ g)(x)=f[f(x)],x\in X. fg:XZ,(fg)(x)=f[f(x)],xX.

由符合映射的定义可知 R g ⊂ D f R_g\subset D_f RgDf.否则,不能组成符合映射.由此可知映射 g g g f f f 的符合是有顺序的, f ∘ g f\circ g fg 有意义并不表示 g ∘ f g\circ f gf也有意义.即使都有意义,也未必相同.

例2

设有映射 g : R → [ − 1 , 1 ] g:\mathbb{R}\to[-1,1] g:R[1,1],对于每个 x ∈ R , g ( x ) = sin ⁡ x x\in \mathbb{R},g(x)=\sin{x} xR,g(x)=sinx;映射 f : [ − 1 , 1 ] → [ 0 , 1 ] f:[-1,1]\to[0,1] f:[1,1][0,1],对于每个 u ∈ [ − 1 , 1 ] , f ( u ) = 1 − u 2 u\in[-1,1],f(u)=\sqrt{1-u^2} u[1,1],f(u)=1u2 ,则映射 g g g f f f 构成的复合映射 f ∘ g : R → [ 0 , 1 ] f\circ g:\mathbb{R}\to[0,1] fg:R[0,1],对于每个 x ∈ R x\in \mathbb{R} xR,有 ( f ∘ g ) ( x ) = f [ g ( x ) ] = f ( sin ⁡ x ) = 1 − sin ⁡ 2 x = ∣ cos ⁡ x ∣ . (f\circ g)(x)=f[g(x)]=f(\sin{x})=\sqrt{1-\sin^2{x}}=|\cos{x}|. (fg)(x)=f[g(x)]=f(sinx)=1sin2x =cosx.

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值