映射与函数
映射的概念
定义
设
X
,
Y
X,Y
X,Y 是两个非空集合,如果存在一个法则
f
f
f,使得对
X
X
X 中每一个元素
x
x
x,按法则
f
f
f,在
Y
Y
Y 中有位移确定的元素
y
y
y 与之对应,那么称
f
f
f 为从
X
X
X 到
Y
Y
Y 的映射,记作:
f
:
X
→
Y
,
f:X\to Y,
f:X→Y,
其中
y
y
y 称为元素
x
x
x(在映射
f
f
f 下)的像,并记作
f
(
x
)
f(x)
f(x),即:
y
=
f
(
x
)
,
y=f(x),
y=f(x),而元素
x
x
x 称为元素
y
y
y(在映射
f
f
f 下)的一个原象;集合
X
X
X 称为映射
f
f
f 的定义域,记作
D
f
D_f
Df,即
D
f
=
X
D_f=X
Df=X;
X
X
X 中所有的 元素的像所组成的集合称为映射
f
f
f 的值域,记作
R
f
R_f
Rf 或
f
(
X
)
f(X)
f(X),即
R
f
=
f
(
X
)
=
{
f
(
x
)
∣
x
∈
X
}
.
R_f=f(X)=\{f(x)|x \in X\}.
Rf=f(X)={f(x)∣x∈X}.
注意点
- 必须具备的三要素:集合 X X X,即定义域 D f = X D_f=X Df=X;集合 Y Y Y,即值域的范围: R f ⊂ Y R_f\subset Y Rf⊂Y;对应法则 f f f,使得每个 x ∈ X x\in X x∈X,有唯一确定的 y = f ( x ) y=f(x) y=f(x) 与之对应.
- 对于每个 x ∈ X x\in X x∈X,元素 x x x 的像 y y y 是唯一的;而对于每个 y ∈ R f y\in R_f y∈Rf,元素 y y y 的原像不一定为唯一的;映射 f f f 的值域 R f R_f Rf 是 Y Y Y 的一个子集,即 R f ⊂ Y R_f \subset Y Rf⊂Y,不一定 R f = Y R_f=Y Rf=Y.
例
例1
设 f : [ − π 2 , π 2 ] → [ − 1 , 1 ] f:[-\frac{\pi}{2},\frac{\pi}{2}]\to [-1,1] f:[−2π,2π]→[−1,1],对于每个 x ∈ [ − π 2 , π 2 ] x\in[-\frac{\pi}{2},\frac{\pi}{2}] x∈[−2π,2π], f ( x ) = sin x f(x)=\sin{x} f(x)=sinx. f f f 是一个映射,其定义域为 D f = [ − π 2 , π 2 ] D_f=[-\frac{\pi}{2},\frac{\pi}{2}] Df=[−2π,2π],值域 R f = [ − 1 , 1 ] R_f=[-1,1] Rf=[−1,1].
如果 Y Y Y 中的任意一元素 y y y 都是 X X X 中某个元素的像,则称 f f f 为 X X X 到 Y Y Y 上的映射或满射;若 X X X 中任意两个不同元素 x 1 ≠ x 2 x_1\not=x_2 x1=x2,它们的像 f ( x 1 ) ≠ f ( x 2 ) f(x_1)\not=f(x_2) f(x1)=f(x2),则称 f f f 为 X X X 到 Y Y Y的单射,如果映射 f f f 既是单射又是满射,则称 f f f 为一一映射(或双射).
映射又称算子.根据集合 X , Y X,Y X,Y 的不同情形,在不同的数学分支中,映射有不同的名称.例如:泛函,变换,函数.
逆映射与复合映射
逆映射
设 f f f 是 X X X 到 Y Y Y 的单射,对于每个 y ∈ R f y\in R_f y∈Rf,有唯一的 KaTeX parse error: Undefined control sequence: \inX at position 2: x\̲i̲n̲X̲,适合和 f ( x ) = y f(x)=y f(x)=y,我们可以定义一个从 R f R_f Rf 到 X X X 的新映射 g g g,即 g : R f → X g:R_f\to X g:Rf→X,对于每个 y ∈ R f y\in R_f y∈Rf,规定 g ( y ) = x g(y)=x g(y)=x,这 x x x 满足 f ( x ) = y f(x)=y f(x)=y,这个映射 g g g 称为 f f f 的逆映射,记作 f − 1 f^{-1} f−1,其定义域 D f − 1 = R f D_{f^{-1}}=R_f Df−1=Rf,值域 R f − 1 = X R_{f^{-1}}=X Rf−1=X.
只有单射才存在逆映射.例1中的映射 f f f 存在逆映射 f − 1 f^{-1} f−1,这个逆映射就是反正弦函数的主值 f − 1 ( x ) = arcsin x , x ∈ [ − 1 , 1 ] f^{-1}(x)=\arcsin{x},x\in[-1,1] f−1(x)=arcsinx,x∈[−1,1],其定义域 D f − 1 = [ − 1 , 1 ] D_{f^{-1}}=[-1,1] Df−1=[−1,1],值域 R f − 1 = [ − π 2 , π 2 ] R_{f^{-1}}=[-\frac{\pi}{2},\frac{\pi}{2}] Rf−1=[−2π,2π].
复合映射
设有两个映射 g : X → Y 1 , g:X\to Y_1, g:X→Y1, f : Y 2 → Z , f:Y_2\to Z, f:Y2→Z,其中 Y 1 ⊂ Y 2 Y_1\subset Y_2 Y1⊂Y2,则由映射 g g g 和 f f f 可以得出一个从 X X X 到 Z Z Z 的对应法则,这个法则确定了一个从 X X X 到 Z Z Z 的映射,这个映射称为 g g g 和 f f f 的复合映射,记作 f ∘ g f\circ g f∘g,即 f ∘ g : X → Z , ( f ∘ g ) ( x ) = f [ f ( x ) ] , x ∈ X . f\circ g:X\to Z,(f\circ g)(x)=f[f(x)],x\in X. f∘g:X→Z,(f∘g)(x)=f[f(x)],x∈X.
由符合映射的定义可知 R g ⊂ D f R_g\subset D_f Rg⊂Df.否则,不能组成符合映射.由此可知映射 g g g 和 f f f 的符合是有顺序的, f ∘ g f\circ g f∘g 有意义并不表示 g ∘ f g\circ f g∘f也有意义.即使都有意义,也未必相同.
例
例2
设有映射 g : R → [ − 1 , 1 ] g:\mathbb{R}\to[-1,1] g:R→[−1,1],对于每个 x ∈ R , g ( x ) = sin x x\in \mathbb{R},g(x)=\sin{x} x∈R,g(x)=sinx;映射 f : [ − 1 , 1 ] → [ 0 , 1 ] f:[-1,1]\to[0,1] f:[−1,1]→[0,1],对于每个 u ∈ [ − 1 , 1 ] , f ( u ) = 1 − u 2 u\in[-1,1],f(u)=\sqrt{1-u^2} u∈[−1,1],f(u)=1−u2,则映射 g g g 和 f f f 构成的复合映射 f ∘ g : R → [ 0 , 1 ] f\circ g:\mathbb{R}\to[0,1] f∘g:R→[0,1],对于每个 x ∈ R x\in \mathbb{R} x∈R,有 ( f ∘ g ) ( x ) = f [ g ( x ) ] = f ( sin x ) = 1 − sin 2 x = ∣ cos x ∣ . (f\circ g)(x)=f[g(x)]=f(\sin{x})=\sqrt{1-\sin^2{x}}=|\cos{x}|. (f∘g)(x)=f[g(x)]=f(sinx)=1−sin2x=∣cosx∣.