高等数学学习笔记DAY11

函数的极限

无穷大

定理2

自变量的同一变化过程中,如果 f ( x ) f(x) f(x) 为无穷大,那么 1 f ( x ) \frac{1}{f(x)} f(x)1 为无穷小;反之 f ( x ) f(x) f(x) 为无穷小,且 f ( x ) ≠ 0 f(x)\not=0 f(x)=0,那么 1 f ( x ) \frac{1}{f(x)} f(x)1 为无穷大.

证:设 lim ⁡ x → x 0 f ( x ) = ∞ \lim_{x\to x_0}f(x)=\infty limxx0f(x)=.

∀ ε > 0 \forall \varepsilon>0 ε>0.根据无穷大的定义,对于 M = 1 ε M=\frac{1}{\varepsilon} M=ε1, ∃   δ > 0 \exists\ \delta>0  δ>0,当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ 时,有 ∣ f ( x ) ∣ > M = 1 ε , |f(x)|>M=\frac{1}{\varepsilon}, f(x)>M=ε1, ∣ 1 f ( x ) < ε ∣ , |\frac{1}{f(x)}<\varepsilon|, f(x)1<ε,所以 1 f ( x ) \frac{1}{f(x)} f(x)1 为当 x → x 0 x\to x_0 xx0 时的无穷小.

运用类似方法也可以证明无穷大的情形.

极限运算法则

下面的讨论中,记号 lim ⁡ \lim lim 下面没有标明自变量的变化过程,实际上,下面的定理对 x → x 0 x\to x_0 xx0 x → ∞ x\to\infty x 都是成立的,在证明时,只证明 x → x 0 x\to x_0 xx0 的情况,只要把 δ \delta δ 改成 X X X,把 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ 改成 ∣ x ∣ > X |x|>X x>X,就可以得到 x → ∞ x\to\infty x 时的证明.

定理1

两个无限小的和是无限小.

证:设 α \alpha α β \beta β 是当 x → x 0 x\to x_0 xx0 时的两个无限小,而 γ = α + β . \gamma=\alpha+\beta. γ=α+β.

∀ ε > 0 \forall\varepsilon>0 ε>0.因为 α \alpha α x → x 0 x\to x_0 xx0 时的无限小,对于 ε 2 > 0 \frac{\varepsilon}{2}>0 2ε>0, ∃   δ 1 > 0 \exists\ \delta_1>0  δ1>0,当 0 < ∣ x − x 0 ∣ < δ 1 0<|x-x_0|<\delta_1 0<xx0<δ1 时,不等式 ∣ α ∣ < ε 2 |\alpha|<\frac{\varepsilon}{2} α<2ε成立.又因 β \beta β 是当 x → x 0 x\to x_0 xx0 时的无穷小,对于 ε 2 \frac{\varepsilon}{2} 2ε, ∃   δ 2 > 0 \exists\ \delta_2>0  δ2>0,当 0 < ∣ x − x 0 ∣ < δ 2 0<|x-x_0|<\delta_2 0<xx0<δ2 时,不等式 ∣ β ∣ < ε 2 |\beta|<\frac{\varepsilon}{2} β<2ε成立.取 δ = min ⁡ { δ 1 , δ 2 } \delta=\min\{\delta_1,\delta_2\} δ=min{δ1,δ2},则当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ 时, ∣ α ∣ < ε 2 , |\alpha|<\frac{\varepsilon}{2}, α<2ε, ∣ β ∣ < ε 2 |\beta|<\frac{\varepsilon}{2} β<2ε同时成立,从而 ∣ γ ∣ = ∣ α + β ∣ < ε 2 + ε 2 = ε |\gamma|=|\alpha+\beta|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon γ=α+β<2ε+2ε=ε,这就证明了 γ \gamma γ 也是 x → x 0 x\to x_0 xx0 时 的无限小.

通过数学归纳法可证明:优先个无限小之和也是无限小.

定理2

有界函数与无限小的乘积也是无限小.

设函数 u u u x 0 x_0 x0 的某一去心邻域 U ˚ ( x 0 , δ 1 ) \mathring{U}(x_0,\delta_1) U˚(x0,δ1) 内是有界的,即 ∃   M > 0 \exists\ M>0  M>0 使得 ∣ u ∣ ≤ M |u|\leq M uM 对一切 x ∈ U ˚ ( x 0 , δ 1 ) x\in\mathring{U}(x_0,\delta_1) xU˚(x0,δ1) 成立.又设 α \alpha α 是当 x → x 0 x\to x_0 xx0 时的无限小,即 ∀ ε > 0 \forall \varepsilon>0 ε>0, ∃   δ 2 > 0 \exists\ \delta_2>0  δ2>0,当 x ∈ U ˚ ( x 0 , δ 1 ) x\in\mathring{U}(x_0,\delta_1) xU˚(x0,δ1) 时,有 ∣ α ∣ < ε M . |\alpha|<\frac{\varepsilon}{M}. α<Mε. δ = min ⁡ { δ 1 , δ 2 } \delta=\min\{\delta_1,\delta_2\} δ=min{δ1,δ2},则当 x ∈ U ˚ ( x 0 , δ 1 ) x\in\mathring{U}(x_0,\delta_1) xU˚(x0,δ1) 时, ∣ u ∣ ≤ M |u|\leq M uM ∣ α ∣ < ε M |\alpha|<\frac{\varepsilon}{M} α<Mε同时成立.从而 ∣ u α ∣ = ∣ u ∣ × ∣ α ∣ < M ∗ ε M = ε , |u\alpha|=|u|\times|\alpha|<M*\frac{\varepsilon}{M}=\varepsilon, uα=u×α<MMε=ε,这就证明了 u α u\alpha uα 是当 x → x 0 x\to x_0 xx0 时的无限小.

推论1:常数与无限小的乘积是无限小.

推论2:有限个无限小的乘积是无限小.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值