CBAM: Convolutional Block Attention Module 论文笔记

本文介绍了卷积块注意力模块(CBAM),这是一个轻量级但有效的注意力模型,能够提升CNN的表示能力。CBAM通过通道和空间注意力两个维度自适应地细化特征,可以无缝集成到任何CNN架构中。实验表明,在ImageNet-1K、MSCOCO和VOC2007等多个基准上,CBAM显著提高了网络性能。CBAM使用平均池化和最大池化来获取通道和空间注意力,其顺序排列优于并行排列。
摘要由CSDN通过智能技术生成

Abstract

该论文提出 Convolutional Block Attention Module (CBAM),一个简单但是有效的用于前馈卷积注意力模块。给出中间特征图,模块可以顺序的从两个维度——通道和空间来推断 attention map,然后将 attention map 和 input feature map 相乘得到自适应的特征细化。并且CBAM是轻量级的,可以无缝整合到任何CNN结构中,并且开销可忽略不计,还可以和CNN一起端到端的进行训练。

Introduction

为提高 CNN 的性能,现有的研究主要关注三个重要的方面:深度、宽度和基数(cardinality)。
与这些方面不同,论文的研究聚焦于另一个架构设计的方面:attention。Attention 不仅仅告诉模型该关注哪里,还提升了兴趣点的表示。论文的目标就是通过使用注意力机制来提升表达能力:关注重要特征、抑制不重要的。我们的模型强调空间和通道这两个主要维度的有意义的特征。为达成这个目标,论文顺序采用通道和空间注意力模型。这样不同的分支可以分别学习去 attend ‘what’ and ‘where’。

主要贡献:

  1. 提出CBAM,一个简单有效的注意力模型,可以广泛应用来增强CNN的表示能力。
  2. 通过大量的 ablation studies 验证该注意力模型的有效性。
  3. 通过插入我们的轻型模块,我们验证了各种网络的性能在多个 benchmarks (ImageNet-1K、MS COCO和VOC 2007)上有很大提高。

Related Work

为了更好地捕捉视觉结构,人类利用一系列 partial glimpses,有选择地聚焦于显著部分。
我们不是直接计算3d注意力图,而是将学习通道注意力和空间注意力的过程分解。这样获得了更少的计算和参数开销。
和之前只使用 average pool 不同,CBAM同时使用了 max pool 和 average pool。这样可以更好的计算 channel 和 spatial attention。

Convolutional Block Attention Module

整体公式概括如下:
在这里插入图片描述
F为中间特征图,Mc是通道注意图,Ms是空间注意图。F’’ 是最后的细化输出。

总体图示如下:
在这里插入图片描述

Channel Attention Module

我们使用通道注意图来利用通道间特征的关系。为了高效计算 channel attention,论文缩小了输入特征图的空间维度。至今为止,平均池化通常被用来聚合空间信息。论文认为最大池化收集了另一个重要的信息来推断更精细的通道方向的注意力。因此论文同时使用平均池化和最大池化特征,并认为这样可以大幅提升网络的表达能力。
进行两种池化后得到的平均池化特征和最大池化特征被送入到一个共享的MLP网络,其中含有一个隐藏层。为减少参数开销,隐藏激活层被设置为 C/r * 1 * 1。其中 r 为减小倍率。
总体 channel attention 可描述如下:
在这里插入图片描述

Spatial Attention Module

我们生成一个空间注意图通过利用特征的空间关系。空间注意关注于有信息的部分在哪,是对通道注意的一个补充。为计算空间关注,首先在通道维度使用平均池化和最大池化,然后合并他们来生成一个特征描述。使用通道维度上的池化操作,可以 highlight informative regions。对于生成的特征描述,使用一个卷积层来生成空间特征图,该图编码了哪里应该强调或抑制。
总体可描述为:
在这里插入图片描述
最后,论文发现,sequential arrangement 是比 parallel arrangement 效果要好的。

Experiments

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

### 回答1: CBAM是卷积块注意力模块的缩写,是一种用于交替堆叠到深度卷积神经网络(CNNs)中的模块。它包含两个子模块:通道注意力模块和空间注意力模块。通道注意力模块用来对每个通道进行加权,确定哪些通道最重要。空间注意力模块在每个通道中对所有空间位置进行加权,可以捕捉不同位置的重要性,从而更好地定位物体。 CBAM的优点在于,它能够提高CNNs的性能,减少了过度拟合的情况。CBAM结构的输入任意大小、任意通道数、任意深度,因此可以适用于各种计算机视觉任务,包括图像分类,物体检测和语义分割等。 总之,CBAM是一种具有高灵活性和高性能的卷积块注意力模块,能够极大地增强CNNs的表达能力,提高计算机视觉任务的准确性。 ### 回答2: CBAMConvolutional Block Attention Module),是一种用于图像分类的Attention模块,它主要是用于增强卷积神经网络(CNN)的特征表达能力,使得CNN能够更好地区分不同种类的图像。 CBAM结构由两部分组成,分别是CBAM-Channel和CBAM-Spatial。在CBAM-Channel中,它通过引入注意力机制,对每个通道的特征进行加权求和,并且使用全局平均池化操作,计算其重要性参数,进而对特征进行修正,从而提升模型的表达能力。CBAM-Spatial则通过空间注意力机制对图像中的区域进行注意力分配权重,进一步优化模型的性能。 CBAM在图像分类方面的性能表现非常卓越。实验证明,在对比原始ResNet和ResNeXt网络,以及加入CBAM的ResNet和ResNext网络进行图像分类时,加入CBAM的ResNet和ResNeXt网络具有更强的表达能力和更高的分类准确性,同时,它在训练过程中的收敛速度也有所提升。 总的来说,CBAM是一种非常有效的图像分类模块,利用注意力机制对CNN的特征进行增强,为图像分类任务提供了更好的性能表现。随着人工智能的迅速发展,CBAM在图像识别、物体检测等领域将具有广阔的应用前景。 ### 回答3: CBAM是卷积块注意力模块的缩写,它是一种用于图像分类和目标检测的神经网络模型。CBAM模块通过将通道和空间注意力机制组合在一起,从而有效地提高了模型的性能。 CBAM模块分为两个部分:通道注意力机制和空间注意力机制。通道注意力机制是针对图像特征中的通道信息进行关注,它可以基于每个通道的特征图来计算权重,然后对于每个通道进行信息的调整和加权。这样,在网络中的每个层次上都能更好地利用有用的通道信息,减少无用信息对网络性能的影响。 空间注意力机制是针对图像特征中的空间信息进行关注。它能够自适应地计算每个像素点的权重,然后对于每个像素点进行信息的调整和加权。这样,网络中的每个空间位置都能更好地利用有用的空间信息,提高目标检测和分类的准确率。 通过组合这两种注意力机制,CBAM模块能够区分有用和无用的特征,从而在图像分类和目标检测任务中取得更好的性能。CBAM模块通常被用在深度卷积神经网络中,例如ResNet以及MobileNet等,以提高整个网络中的特征提取能力和分类性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值