Towards Transferable Targeted Attack 论文笔记

论文探讨了有目标对抗攻击的噪声固化问题,指出其导致的可迁移性降低。通过引入Poincaré距离作为相似度度量,缓解噪声固化,并结合Triplet Loss使对抗样本远离原始分类,提升攻击的可迁移性。实验结果验证了这种方法的有效性。
摘要由CSDN通过智能技术生成

00 Abstract

作者指出,对抗样本的一个内在属性就是它的可迁移性。而对于无目标攻击,有目标攻击生成可迁移样本更加困难。主要原因有二:

  • 噪声固化现象:在迭代攻击过程中,由于所添加的噪声是每次迭代中梯度动量的累积,这导致成功的扰动在迭代的过程中相似度很高,因此噪声的多样性和可适应性缺乏,导致可迁移性低。
  • 仅仅让对抗样本靠近目标分类,而没有远离原真实分类是不够的。

为克服这两个问题,论文提出引用 Poincaré distance 作为相似度度量,使得梯度的大小在迭代攻击过程中自适应,以减轻噪声固化现象。并且论文在迭代攻击过程中远离真实标签,来获得更好的迁移性。

01 Introduction

论文主要贡献如下:

  • 与简单的扩展无目标攻击相比,论文发现并提出有目标攻击与无目标攻击不同的特殊属性。这使得我们得到一个可以提高有目标攻击的表现的新方法。
  • 正式的提出有目标攻击的噪声固化问题。第一次引入 Poincaré space 作为度量空间,代替softmax cross entropy 来解决噪声固化问题。
  • 论文还指出,可以利用真实标签信息作为附加,使用triplet loss,来帮助对抗样例远离原分类。

02 Background

Adversarial Attack

本论文的基础模型为 momentum iterative FGSM,它整合了动量项到攻击的迭代过程中来确保噪声添加的方向更加平滑。

其他 transferable targeted adversarial examples:最大化目标分类的probability。
在这里插入图片描述
但仍缺少针对黑盒模型的可迁移的、有效的、有目标攻击。

Poincaré Ball

参考博客:https://zhuanlan.zhihu.com/p/68104722

Poincaré Ball 的示意图如下:
在这里插入图片描述
在 Poincaré Ball 示意图中,每个点之间的距离是相等的,也就是说,当弧线接近圆周时,它就接近平面的“无穷远”,这意味着当你向球的 surface 移动时,则距离呈指数增长。

该论文中,使用 Poincaré Ball 这个空间来代替欧几里得标准空间。相比较而言,Poincaré Ball 可以将整个几何图形拟合到半径一个单位的球中,这意味着它比欧几里得表示方法有更好的表示能力。

Poincaré Ball 的所有点都集中在一个n维的 l2 单元球中,其上两点 u、v 之间的距离可以表示为:
在这里插入图片描述
其中,u 和 v 是两个 n维欧几里得空间内 l2范数小于 1 的点。δ(u,v)可以定义为:
在这里插入图片描述
在这里插入图片描述
这个公式意味着,当 ||u||2 或 ||v||2 趋近于 1 时,距离会变得无限大,即该点趋近于球面边缘。

Methodology

Motivation

有目标攻击和无目标攻击有两个关键的不同之处:

  1. 有目标攻击需要找到目标类别对抗样本的(局部)最小值
  2. 无目标攻击只需避免被 poor local maxima 捕获,并逃离决策边界即可。

噪声固化现象对于无目标攻击是一个好的属性,因为它能够帮助逃离决策边界。但对于有目标攻击来讲,当求解(局部)最小值时,固化的噪声并不能有效的取到最小,所以会导致有目标攻击表现不佳。甚至如果输出的目标分类可能性接近1,会导致softmax的饱和,当input变化很大时,梯度只变化一点。这会导致最后的迭代过程中错误不断累积。

Targeted Attack with Poincaré Distance Metric

标记 y 为 one hot encoded 标签。由于 ||y||2=1,所以 y 点位于 Poincaré ball 的边缘。任何点与 y 点的距离都为 ∞ 。接下来我们将要减少这个距离。

使用 Poincaré Distance 作为测量仍存在一个严重的问题,对于样本点 x 的分类结果 l(x) 我们要满足他的二范数小于1(根据距离定义),因此我们使用它的 l1 范数进行标准化。对于目标标签 y,由于它接近无穷,故减去一个 ξ = 0.0001 方便计算。因此最后的 Poincaré Distance Metric loss 为:
在这里插入图片描述
其中,l(x) 为多种模型的权重整合,K为整合的模型数:
在这里插入图片描述

在这里插入图片描述
使用 Poincaré metric 之后,梯度大小只有在靠近目标分类的时候才会上升。这代表梯度是自适应的,使得噪声的方向更加灵活。

Triplet Loss for Targeted Attack

使用 Triplet Loss 来使得对抗样本远离原分类。
在这里插入图片描述
由于 l(xadv) 没有标准化,所以我们使用角距离来作为距离测量:
在这里插入图片描述
最后我们总体的 loss 函数为:
在这里插入图片描述
在这里插入图片描述

Experiments

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
上图证明了,poincare metric 相比较 cross entropy 较好的解决了噪声固化问题,在高迭代次数时仍保持了较高的梯度。


本文仅为个人论文笔记,若理解有误,敬请指出!多谢!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值