import numpy as np
import cv2 as cv
# 彩色图像全局直方图均衡化
def hisEqulColor1(img):
# 将RGB图像转换到YCrCb空间中
ycrcb = cv.cvtColor(img, cv.COLOR_BGR2YCR_CB)
# 将YCrCb图像通道分离
channels = cv.split(ycrcb)
# 对第1个通道即亮度通道进行全局直方图均衡化并保存
cv.equalizeHist(channels[0], channels[0])
# 将处理后的通道和没有处理的两个通道合并,命名为ycrcb
cv.merge(channels, ycrcb)
# 将YCrCb图像转换回RGB图像
cv.cvtColor(ycrcb, cv.COLOR_YCR_CB2BGR, img)
return img
# 彩色图像进行自适应直方图均衡化,代码同上的地方不再添加注释
def hisEqulColor2(img):
ycrcb = cv.cvtColor(img, cv.COLOR_BGR2YCR_CB)
channels = cv.split(ycrcb)
# 以下代码详细注释见官网:
# https://docs.opencv.org/4.1.0/d5/daf/tutorial_py_histogram_equalization.html
clahe = cv.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
clahe.apply(channels[0], channels[0])
cv.merge(channels, ycrcb)
cv.cvtColor(ycrcb, cv.COLOR_YCR_CB2BGR, img)
return img
img = cv.imread('794.jpg')
img1 = img.copy()
img2 = img.copy()
res1 = hisEqulColor1(img1)
res2 = hisEqulColor2(img2)
res = np.hstack((img, res1, res2))
cv.imwrite('7941.jpg', res)
直方图均衡化
于 2023-03-14 19:15:57 首次发布
该文介绍了如何使用OpenCV库在Python中对彩色图像进行全局和自适应直方图均衡化。首先,它将图像从BGR色彩空间转换到YCrCb,然后对亮度通道进行直方图均衡化。对于自适应均衡化,它利用了CLAHE(对比度受限的自适应直方图均衡化)方法,调整了clipLimit和tileGridSize参数以优化效果。最后,将处理后的图像与原始图像并排显示并保存结果。
摘要由CSDN通过智能技术生成