直方图均衡化

该文介绍了如何使用OpenCV库在Python中对彩色图像进行全局和自适应直方图均衡化。首先,它将图像从BGR色彩空间转换到YCrCb,然后对亮度通道进行直方图均衡化。对于自适应均衡化,它利用了CLAHE(对比度受限的自适应直方图均衡化)方法,调整了clipLimit和tileGridSize参数以优化效果。最后,将处理后的图像与原始图像并排显示并保存结果。
摘要由CSDN通过智能技术生成
import numpy as np
import cv2 as cv


# 彩色图像全局直方图均衡化
def hisEqulColor1(img):
    # 将RGB图像转换到YCrCb空间中
    ycrcb = cv.cvtColor(img, cv.COLOR_BGR2YCR_CB)
    # 将YCrCb图像通道分离
    channels = cv.split(ycrcb)
    # 对第1个通道即亮度通道进行全局直方图均衡化并保存
    cv.equalizeHist(channels[0], channels[0])
    # 将处理后的通道和没有处理的两个通道合并,命名为ycrcb
    cv.merge(channels, ycrcb)
    # 将YCrCb图像转换回RGB图像
    cv.cvtColor(ycrcb, cv.COLOR_YCR_CB2BGR, img)
    return img


# 彩色图像进行自适应直方图均衡化,代码同上的地方不再添加注释
def hisEqulColor2(img):
    ycrcb = cv.cvtColor(img, cv.COLOR_BGR2YCR_CB)
    channels = cv.split(ycrcb)

    # 以下代码详细注释见官网:
    # https://docs.opencv.org/4.1.0/d5/daf/tutorial_py_histogram_equalization.html
    clahe = cv.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
    clahe.apply(channels[0], channels[0])

    cv.merge(channels, ycrcb)
    cv.cvtColor(ycrcb, cv.COLOR_YCR_CB2BGR, img)
    return img


img = cv.imread('794.jpg')
img1 = img.copy()
img2 = img.copy()

res1 = hisEqulColor1(img1)
res2 = hisEqulColor2(img2)

res = np.hstack((img, res1, res2))
cv.imwrite('7941.jpg', res)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值