一、聚类算法和相似度
在机器学习中,有两类学习算法,一类是无监督学习,另一类是监督学习。聚类算法是无监督学习算法,一般构建用户兴趣属性画像等可应用聚类算法;而一般的分类算法是有监督学习,基于有标注的历史数据进行算法模型构建 。
聚类的定义可以是这样的:对大量未知标注的数据集,按照数据内部存在的数据特征将数据集划分为多个不同的类别,使得类别内的数据比较相似,类别间的数据相似度较小。重点是计算样本之间的相似度,这个相似度有时候也称为样本间的距离。
那么聚类中如何度量相似度呢?一般有两种方法,一种是对所有样本作特征投影,另一种则是距离计算。前者主要从直观的图像上反应样本之间的相似度关系,而后者则是通过衡量对象之间的差异度来反应样本之间的相似度关系。
一些基础概念:
1、范数(数学基础)
向量的范数可以简单、形象地理解为向量的长度,或者向量到坐标系原点的距离,或者相应空间内的两点之间的距离。
向量的范数定义: 向量的范数是一个函数||x||,满足非负性||x||>0,齐次性||cx||=|c|*||x||,三角不等式||x+y||<=||x||+||y||.
L1范数: ||x||为x向量各个元素绝对值之和。
L2范数: ||x||为x向量各个元素平方和的开方,L2范数又称欧几里得范数。
Lp范数: ||x||为x向量各个元素绝对值的p次方和的1/p次方。
L无穷范数: ||x||为x向量各个元素绝对值最大的那个元素。
2、n维空间
距离的计算是基于一定的n维空间上的。
例如采集1个亿微信用户样本,他们的特征变量不太一样&#
最低0.47元/天 解锁文章

7377

被折叠的 条评论
为什么被折叠?



