dify安装ollama插件及OLLAMA模型添加失败问题完整解决方法

安装dify1.2.0和1.3.1均出现OLLAMA插件安装失败或插件安装后添加模型失败的问题,具体表现为一是添加ollama插件时没反应,需要二次添加才成功;二是添加模型时点保存报500错误或点保存后没反应,无法成功添加。

解决办法:

第一步:修改.env文件

PIP_MIRROR_URL=https://mirrors.aliyun.com/pypi/simple

并末尾加入2行:

CUSTOM_MODEL_ENABLED=true
OLLAMA_API_BASE_URL=http://host.docker.internal:11434

注意:照复制进去就行,无需修改为局域网内OLLAMA真实所在的服务器IP

第二步:修改docker-compose.yaml文件

plugin_daemon:下面的两个超时参数改大

PYTHON_ENV_INIT_TIMEOUT: ${PLUGIN_PYTHON_ENV_INIT_TIMEOUT:-420}
PLUGIN_MAX_EXECUTION_TIMEOUT: ${PLUGIN_MAX_EXECUTION_TIMEOUT:-1000}

### 比较 DifyOllama 项目 #### 功能特性 Dify 提供了一个集成平台,允许用户轻松构建和管理基于大语言模型的应用程序。它支持多种模型的接入,并提供了友好的图形化界面来简化开发过程[^1]。 相比之下,Ollama 更专注于优化大语言模型本身的性能以及提高其推理效率。该项目提供了一系列工具和技术,旨在使大型预训练模型能够在资源有限的情况下依然保持高效的运行状态[^2]。 #### 应用场景 对于希望快速搭建并部署AI驱动应用程序的企业来说,Dify 是一个理想的选择。由于内置了丰富的API接口和支持多样的插件扩展机制,开发者可以更便捷地实现定制化的解决方案。 而当目标是在边缘设备或其他计算能力受限环境下执行复杂的自然语言处理任务时,则应考虑采用Ollama所提供的技术方案。这些技术有助于克服硬件限制带来的挑战,确保即使在网络条件不佳的地方也能获得良好的用户体验。 #### 用户体验 使用Dify的过程中,用户能够享受到直观的操作环境与完善的文档指导;这使得即使是初学者也容易上手操作。此外,社区活跃度较高,在遇到问题时可以获得及时的帮助和支持。 Ollama则以其卓越的技术实力赢得了专业人士的认可。尽管官方提供的资料相对较少一些,但是凭借强大的算法优势及其开源性质所带来的灵活性,吸引了众多研究者参与贡献和发展该生态系统。 ```python # 示例代码用于展示如何连接到两种服务(假设) import requests def connect_to_dify(api_key): url = f"https://api.dify.com/v1?apiKey={api_key}" response = requests.get(url) return response.json() def connect_to_ollama(access_token): headers = {"Authorization": f"Bearer {access_token}"} url = "https://api.ollama.com/v1" response = requests.get(url, headers=headers) return response.json() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

symstandsun

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值