边缘计算与机器学习
边缘计算是一种分布式计算模型,旨在将计算和数据处理能力推向网络边缘,靠近数据源和终端设备。而机器学习是一种人工智能技术,通过构建和训练模型来使计算机能够从数据中学习和做出预测。本文将探讨边缘计算与机器学习的关系,并提供相应的源代码示例。
边缘计算通过将计算任务从传统的云服务器转移到网络边缘的设备上,可以实现低延迟、高带宽和隐私保护等优势。而机器学习作为一种数据驱动的技术,对大量的数据进行分析和学习,以提供智能化的决策和预测。将边缘计算与机器学习相结合,可以在边缘设备上实现实时的智能决策和数据处理,减少与云交互的延迟和带宽消耗。
下面是一个简单的示例代码,演示了如何在边缘设备上使用机器学习模型进行图像分类。
import tensorflow as tf
from tensorflow.keras.applications.mobilenet_v2 import prep