【踩坑】已解决 ModuleNotFoundError: No module named ‘models‘ 解决torch.load模型的问题,费时巨坑

问题场景:

当使用torch.load加载模型时,报错No module named ‘models’

在这里插入图片描述

解决方案:

解决思路

在网上查了很多资料说目录结构得和保存时一模一样,话虽如此,但一直没理解要怎么一样?
如图所示,我的模型是是v7模型结构,报错信息说 缺失models_v7。因为训练时有这个模型目录结构,因此在加载时会加载模型所保存的结构,需要让加载的模型结构环境和训练的模型结构环境保持一致。

解决代码

cp -r models models_v7 添加一下所缺失的模型结构,最终解决该bug。

成功运行截图:
在这里插入图片描述

v7_detect.py代码如下

import argparse
import time
from pathlib import Path

import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random

from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
    scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
from utils.plots import plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel


def detect(save_img=False):
    source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, not opt.no_trace
    save_img = not opt.nosave and not source.endswith('.txt')  # save inference images
    webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
        ('rtsp://', 'rtmp://', 'http://', 'https://'))

    # Directories
    save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    print(f"devicessssssssssssss {
     opt.device}")
    device = select_device(opt.device)
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    stride = int(model.stride.max())  # model stride
    imgsz = check_img_size(imgsz, s=stride)  # check img_size

    if trace:
        model = TracedModel(model, device, opt.img_size)

    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = check_imshow()
        cudnn.benchm
<think>好的,用户现在遇到了ModuleNotFoundError: No module named 'yolov5'的问题。我之前已经介绍过如何调用训练好的YOLOv5模型,可能用户按照步骤操作时遇到了这个问题。我需要分析可能的原因,并给出解决方案。 首先,用户可能没有正确安装或导入YOLOv5的代码库。YOLOv5并不是一个可以通过pip直接安装的包,而是需要从GitHub仓库克隆到本地。用户在另一个项目中使用时,如果直接复制模型文件,但没有正确设置YOLOv5的路径,就会导致找不到模块的错误。 接下来,用户可能尝试了直接导入yolov5模块,但系统路径中没有包含YOLOv5的目录。这时候需要将YOLOv5的路径添加到sys.path中,或者使用相对路径导入。 另外,用户可能使用了PyTorch Hub的方法,但可能没有正确指定路径或环境问题导致加载失败。需要检查路径是否正确,或者是否有网络问题导致无法动态加载代码库。 还要考虑环境依赖的问题,用户是否安装了所有必要的依赖库,比如torch、matplotlib等,这些在YOLOv5的requirements.txt中都有列出,可能需要用户安装。 可能的解决方案包括:克隆YOLOv5仓库到项目目录,添加路径到系统路径,使用PyTorch Hub动态加载,或者通过pip安装yolov5的包(如果有的话)。另外,检查代码中的导入语句是否正确,是否有拼写错误。 需要分步骤详细说明每个解决方法,并给出具体的代码示例,比如如何克隆仓库,如何添加路径,如何使用PyTorch Hub等。同时提醒用户注意路径的正确性,以及依赖库的安装。 还要考虑用户可能的环境差异,比如是否使用虚拟环境,路径是否绝对或相对,是否有权限问题等。需要给出常见问题解决建议,比如路径问题、版本兼容性等。 最后,总结问题原因,强调正确导入YOLOv5模块的方法,并推荐使用PyTorch Hub的方法以避免路径问题,同时确保依赖项正确安装。</think>--- 遇到 `ModuleNotFoundError: No module named 'yolov5'` 错误,通常是因为新项目中未正确引入 YOLOv5 的代码库或路径配置问题。以下是详细解决方案: --- ### **1. 问题原因** - YOLOv5 不是一个通过 `pip` 直接安装的 Python 包,而是一个需要从 GitHub 克隆的代码仓库。 - 在新项目中,若未正确设置 YOLOv5 的代码路径或未安装相关依赖,会导致无法找到 `yolov5` 模块。 --- ### **2. 解决方案** #### **(1) 方法一:克隆 YOLOv5 仓库到项目目录** 在新项目的根目录下克隆官方仓库,确保代码路径正确: ```bash # 进入项目目录 cd your_project # 克隆 YOLOv5 官方仓库(确保有 git) git clone https://github.com/ultralytics/yolov5.git # 将克隆的代码目录重命名为 yolov5(可选,保持路径一致) mv yolov5 yolov5 ``` **代码中手动添加路径:** ```python import sys import os # 添加 yolov5 目录到 Python 路径(假设 yolov5 文件夹在项目根目录) sys.path.append(os.path.abspath("yolov5")) # 确保路径正确 # 现在可以导入 YOLOv5 模块 from yolov5.utils.general import non_max_suppression ``` --- #### **(2) 方法二:使用 PyTorch Hub 动态加载(推荐)** 无需克隆仓库,直接通过 PyTorch Hub 加载 YOLOv5 接口: ```python import torch # 自动从 GitHub 下载 YOLOv5 代码并加载模型 model = torch.hub.load( repo_or_dir='ultralytics/yolov5', # 官方仓库地址 model='custom', # 使用自定义模型 path='path/to/your/best.pt', # 模型文件路径 source='github', # 从 GitHub 加载代码 force_reload=True # 强制更新代码(可选) ) # 直接推理 results = model("test.jpg") results.show() ``` --- #### **(3) 方法三:将 YOLOv5 安装为本地包(可选)** 在 YOLOv5 仓库目录中执行安装命令,使其成为本地可导入的包: ```bash # 进入克隆的 yolov5 目录 cd yolov5 # 以可编辑模式安装(开发模式) pip install -e . ``` 安装后,可直接在新项目中导入: ```python from yolov5.utils.general import non_max_suppression ``` --- ### **3. 验证依赖项** 确保安装了 YOLOv5 所需的依赖库: ```bash # 进入 YOLOv5 代码目录 cd yolov5 # 安装依赖(需提前克隆仓库) pip install -r requirements.txt ``` 关键依赖包括: - `torch` >= 1.7.0 - `opencv-python` - `numpy` - `matplotlib` -- ### **4. 项目结构示例** ``` your_project/ ├── yolov5/ # 克隆的 YOLOv5 代码目录 │ ├── models/ │ ├── utils/ │ └── ... ├── models/ │ └── best.pt # 你的训练模型 └── inference.py # 调用模型的脚本 ``` --- ### **5. 常见错误排查** #### **(1) 路径错误** - **现象**:`sys.path.append()` 添加的路径与实际路径不一致。 - **解决**:使用绝对路径或检查文件结构: ```python import os print(os.path.abspath("yolov5")) # 确认路径是否正确 ``` #### **(2) PyTorch Hub 下载失败** - **现象**:因网络问题无法从 GitHub 加载代码。 - **解决**: - 配置代理(如有需要)。 - 手动克隆仓库后指定本地路径: ```python model = torch.hub.load( repo_or_dir='path/to/local/yolov5', # 本地路径 model='custom', path='best.pt', source='local' # 从本地加载 ) ``` #### **(3) 版本冲突** - **现象**:训练和推理环境的 PyTorch 或 YOLOv5 代码版本不一致。 - **解决**: ```bash # 查看 YOLOv5 官方要求的版本 cat yolov5/requirements.txt # 更新 PyTorch pip install torch==1.10.0+cu113 -f https://download.pytorch.org/whl/torch_stable.html ``` --- ### **6. 总结** - **优先推荐 PyTorch Hub**:无需管理代码路径,适合快速部署。 - **强制路径添加**:若需自定义修改 YOLOv5 代码(如修改后处理逻辑),可克隆仓库并手动引入。 - **依赖一致性**:确保训练和推理环境的库版本一致。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值