机器学习之过拟合和欠拟合以及适合的模型

本文探讨了回归和分类模型中过拟合与欠拟合的现象,过拟合表现为模型在训练数据上表现优异,但在新数据上泛化能力弱;欠拟合则是模型无法有效捕获数据趋势。为解决过拟合,可以采取增加训练数据、特征选择或正则化等方法。特征选择可能造成信息损失,而正则化通过限制模型复杂度来防止过拟合。
摘要由CSDN通过智能技术生成

1、回归模型当中的过拟合以及欠拟合:

在这里插入图片描述


2、分类模型当中的过拟合以及欠拟合:

在这里插入图片描述


3、如何解决过拟合问题:

  • 1、通过获取更多训练数据解决过拟合问题
  • 2、通过“特征选择(feature selection)”选择一组合适的特征,缺点是只使用了所有特征的一个子集,容易造成信息缺失
  • 3、正则化(regularization):减小参数
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值