机器学习之过拟合和欠拟合以及适合的模型
最新推荐文章于 2024-11-07 17:15:19 发布
本文探讨了回归和分类模型中过拟合与欠拟合的现象,过拟合表现为模型在训练数据上表现优异,但在新数据上泛化能力弱;欠拟合则是模型无法有效捕获数据趋势。为解决过拟合,可以采取增加训练数据、特征选择或正则化等方法。特征选择可能造成信息损失,而正则化通过限制模型复杂度来防止过拟合。
摘要由CSDN通过智能技术生成