数学基础 -- 微积分之不定积分

不定积分

不定积分是微积分中的一个概念,它指的是一个函数的所有原函数的集合。换句话说,不定积分是对函数进行反导数运算的结果。它与定积分不同,不定积分没有具体的上下限,因此其结果包含一个常数项(称为积分常数)。

定义:

f ( x ) f(x) f(x) 是一个函数,如果存在一个函数 F ( x ) F(x) F(x) 满足 F ′ ( x ) = f ( x ) F'(x) = f(x) F(x)=f(x),那么称 F ( x ) F(x) F(x) f ( x ) f(x) f(x) 的一个原函数。不定积分记为:

∫ f ( x )   d x = F ( x ) + C \int f(x) \, dx = F(x) + C f(x)dx=F(x)+C

其中, C C C 是积分常数,代表任意的常数。因为导数运算会将常数项消去,所以原函数并不唯一,不定积分会包含所有可能的原函数。

不定积分的基本性质:

  1. 线性性质

    • ∫ ( a f ( x ) + b g ( x ) )   d x = a ∫ f ( x )   d x + b ∫ g ( x )   d x \int (af(x) + bg(x)) \, dx = a \int f(x) \, dx + b \int g(x) \, dx (af(x)+bg(x))dx=af(x)dx+bg(x)dx,其中 a a a b b b 是常数。
  2. 常数倍积的积分

    • ∫ c ⋅ f ( x )   d x = c ⋅ ∫ f ( x )   d x \int c \cdot f(x) \, dx = c \cdot \int f(x) \, dx cf(x)dx=cf(x)dx,其中 c c c 是常数。

常见的不定积分公式:

  1. 幂函数积分:
    ∫ x n   d x = x n + 1 n + 1 + C ( n ≠ − 1 ) \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1) xndx=n+1xn+1+C(n=1)

  2. 指数函数积分:
    ∫ e x   d x = e x + C \int e^x \, dx = e^x + C exdx=ex+C

  3. 三角函数积分:
    ∫ sin ⁡ ( x )   d x = − cos ⁡ ( x ) + C \int \sin(x) \, dx = -\cos(x) + C sin(x)dx=cos(x)+C
    ∫ cos ⁡ ( x )   d x = sin ⁡ ( x ) + C \int \cos(x) \, dx = \sin(x) + C cos(x)dx=sin(x)+C

  4. 对数函数积分:
    ∫ 1 x   d x = ln ⁡ ∣ x ∣ + C ( x ≠ 0 ) \int \frac{1}{x} \, dx = \ln|x| + C \quad (x \neq 0) x1dx=lnx+C(x=0)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值