不定积分
不定积分是微积分中的一个概念,它指的是一个函数的所有原函数的集合。换句话说,不定积分是对函数进行反导数运算的结果。它与定积分不同,不定积分没有具体的上下限,因此其结果包含一个常数项(称为积分常数)。
定义:
设 f ( x ) f(x) f(x) 是一个函数,如果存在一个函数 F ( x ) F(x) F(x) 满足 F ′ ( x ) = f ( x ) F'(x) = f(x) F′(x)=f(x),那么称 F ( x ) F(x) F(x) 是 f ( x ) f(x) f(x) 的一个原函数。不定积分记为:
∫ f ( x ) d x = F ( x ) + C \int f(x) \, dx = F(x) + C ∫f(x)dx=F(x)+C
其中, C C C 是积分常数,代表任意的常数。因为导数运算会将常数项消去,所以原函数并不唯一,不定积分会包含所有可能的原函数。
不定积分的基本性质:
-
线性性质:
- ∫ ( a f ( x ) + b g ( x ) ) d x = a ∫ f ( x ) d x + b ∫ g ( x ) d x \int (af(x) + bg(x)) \, dx = a \int f(x) \, dx + b \int g(x) \, dx ∫(af(x)+bg(x))dx=a∫f(x)dx+b∫g(x)dx,其中 a a a 和 b b b 是常数。
-
常数倍积的积分:
- ∫ c ⋅ f ( x ) d x = c ⋅ ∫ f ( x ) d x \int c \cdot f(x) \, dx = c \cdot \int f(x) \, dx ∫c⋅f(x)dx=c⋅∫f(x)dx,其中 c c c 是常数。
常见的不定积分公式:
-
幂函数积分:
∫ x n d x = x n + 1 n + 1 + C ( n ≠ − 1 ) \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1) ∫xndx=n+1xn+1+C(n=−1) -
指数函数积分:
∫ e x d x = e x + C \int e^x \, dx = e^x + C ∫exdx=ex+C -
三角函数积分:
∫ sin ( x ) d x = − cos ( x ) + C \int \sin(x) \, dx = -\cos(x) + C ∫sin(x)dx=−cos(x)+C
∫ cos ( x ) d x = sin ( x ) + C \int \cos(x) \, dx = \sin(x) + C ∫cos(x)dx=sin(x)+C -
对数函数积分:
∫ 1 x d x = ln ∣ x ∣ + C ( x ≠ 0 ) \int \frac{1}{x} \, dx = \ln|x| + C \quad (x \neq 0) ∫x1dx=ln∣x∣+C(x=0)