数学基础 -- 微积分之链式求导法则

链式求导法则

链式求导法则(Chain Rule)是微积分中非常重要的法则,用于计算复合函数的导数。其基本思想是:如果一个变量依赖于另一个变量,而这个中间变量又依赖于另一个变量,那么可以通过链式法则把这些依赖关系串联起来,从而计算最终的导数。

链式法则的形式

假设有两个函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x),并且想求复合函数 f ( g ( x ) ) f(g(x)) f(g(x)) x x x 的导数,链式法则表示为:

d d x [ f ( g ( x ) ) ] = f ′ ( g ( x ) ) ⋅ g ′ ( x ) \frac{d}{dx} [f(g(x))] = f'(g(x)) \cdot g'(x) dxd[f(g(x))]=f(g(x))g(x)

用语言来描述:

  • 先对内层函数 g ( x ) g(x) g(x) 求导,
  • 再对外层函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x) 的值上求导,
  • 最后将两个导数相乘。

简单例子

考虑以下函数:

y = f ( g ( x ) ) = ( 3 x + 2 ) 5 y = f(g(x)) = (3x + 2)^5 y=f(g(x))=(3x+2)5

  1. u = 3 x + 2 u = 3x + 2 u=3x+2,则原函数可以表示为 y = u 5 y = u^5 y=u5
  2. u = 3 x + 2 u = 3x + 2 u=3x+2 求导: d u d x = 3 \frac{du}{dx} = 3 dxdu=3
  3. y = u 5 y = u^5 y=u5 求导: d y d u = 5 u 4 \frac{dy}{du} = 5u^4 dudy=5u4
  4. 根据链式法则,有:
    d y d x = d y d u ⋅ d u d x = 5 u 4 ⋅ 3 = 15 ( 3 x + 2 ) 4 \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = 5u^4 \cdot 3 = 15(3x + 2)^4 dxdy=dudydxdu=5u43=15(3x+2)4

因此,复合函数 ( 3 x + 2 ) 5 (3x + 2)^5 (3x+2)5 的导数为 15 ( 3 x + 2 ) 4 15(3x + 2)^4 15(3x+2)4

多变量情况

链式法则同样可以应用于多变量函数。假设有两个变量 x x x y y y 分别依赖于另一个变量 t t t,此时链式法则的形式为:

z = f ( x , y ) , x = x ( t ) , y = y ( t ) z = f(x, y), \quad x = x(t), \quad y = y(t) z=f(x,y),x=x(t),y=y(t)

根据链式法则,有:

d z d t = ∂ f ∂ x ⋅ d x d t + ∂ f ∂ y ⋅ d y d t \frac{dz}{dt} = \frac{\partial f}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dt} dtdz=xfdtdx+yfdtdy

这个公式表示:

  • 先对 f ( x , y ) f(x, y) f(x,y) 分别对 x x x y y y 求偏导数,
  • 再乘以 x x x y y y t t t 的导数,
  • 最后将结果相加。

应用场景

链式求导法则在多个领域中有广泛应用,例如:

  • 物理学:计算物理量随时间的变化率时,常涉及复合函数关系,如速度和加速度的关系。
  • 经济学:求经济模型中的效用函数或生产函数的导数时,链式法则用于处理多变量依赖关系。
  • 机器学习:在神经网络的反向传播算法中,链式法则被用来计算每个权重对损失函数的贡献。

链式法则是一种强大的工具,它使得处理复杂的函数关系变得简单和可行。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值