微积分——求导数的链式法则

链式法则是一种解决复合函数导数问题的重要工具。它指出,如果y=f(u)和u=g(x)都是可微函数,那么y=f(g(x))也是可微的,并且y对x的导数等于y对u的导数乘以u对x的导数。文章通过举例说明了如何使用链式法则求解具有多层复合的函数导数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

链式法则(Chain Rule)是微积分最强大的法则之一。这个法则处理的是复合函数(Composite Functions)的导数问题。

复合函数: 以另一种方式将两个函数组合起来的函数。正式定义:

分别为两个函数,函数(fg)(x) = (g(x))称为的复合函数。复合函数 f的定义域为所有的定义域中使得g(x) 在的定义域中的所有的集合。即,复合函数的定义域中的自变量,首先必须满足是位于的定义域中,同时,这个自变量也必须满足使其函数的值位于的定义域中,满足这两个限制的所有的值,构成复合函数的定义域。

当然,复合函数还可以继续复合,组成更复杂的函数。也就是说,复合函数是两套以上的映射法则。一般来讲,f的复合函数,与的复合函数,是不一样的复合函数。

例如,求(x) = 2x– 3 和 g(x) = x^2 + 1 求复合函数  fg gf

(1) fg (读作“与 的复合函数”)

(f\circ g)( x) = f (g(x)) = f(x^2 + 1) = 2(x^2 + 1) - 3 = 2x^2 - 1

(2) gf (读作“与 的复合函数”)

(g\circ f)( x) = g (g(x)) = g(2x - 3) = (2x - 3)^2 + 1 = 4x^2 -12 x + 10

链式法则定理:假如 y = (u)是一个的可微函数,u = (x)是一个的可微函数,则 y = (g(x)) 是一个的可微函数,并且

\frac{dy}{dx} = \frac{dy}{du} . \frac{du}{dx} (即的导数,等于的导数,乘以的导数。) 

或者,写成等价形式

\frac{d}{dx}[f(g(x))] = f'(g(dx))g'(x) 

(即,先对第一个函数规则求导数,再对第二个函数规则求导数;链式法则的核心在于识别出复合函数的复合规则,找出复合前的两个函数规则;这种复合可能有多层,从最外层开始,从外向内层层解剖。)

例如,求函数 f(x) = (3x-2x^2)^3  的导数。

从函数定义可以看出,这是一个复合函数,有两套函数规则。3x-2x^2 这是一个函数规则,令其为 u(x) = 3x-2x^2 ;外层又有一个函数规则,立方规则,因此写成 f(x) = [u(x)]^3 。

因此,\frac{dy}{dx} = \frac{dy}{du}.\frac{du}{dx} = 3[u(x)]^2.(3 - 4x) = 3(3x-2x^2)^2.(3 - 4x)

例如,求 f(t) = [sin(4t)]^{3}  的导数。

这个复合函数有3层复合,即,立方这一层映射,三角函数这一层映射,最里层直线函数映射。

f '(t) = 3 [sin(4t)]^{2} .\frac{d sin(4t)}{dt} (先求最外层的导数,立方映射这一层)

= 3 [sin(4t)]^{2} . cos(4t).\frac{d(4t)}{dt} (求次外层的导数,三角函数映射这一层)

= 12 [sin(4t)]^2 . cos(4t) (求最里层的导数,直线函数映射这一层)

参考资料:

<<calculus>> Ron Larson,The Pennsylvania State University The Behrend College
Bruce Edwards, University of Florida

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值