深入理解神经网络中的损失函数:BCELoss 与 MSELoss
在神经网络开发中,损失函数是关键组件之一,决定了模型优化的方向和效果。本文将详细探讨两种常用损失函数:二元交叉熵(BCELoss) 和 均方误差(MSELoss),帮助程序员更好地选择适合具体任务的损失函数。
1. 什么是损失函数?
损失函数是衡量模型预测结果与真实值之间差异的指标,训练神经网络的目标就是通过优化算法(如梯度下降)最小化损失函数的值,从而提升模型的预测能力。
不同的任务需要不同类型的损失函数。以下分别介绍 BCELoss 和 MSELoss 的公式、适用场景及其背后的理论支持。
2. 二元交叉熵损失函数(BCELoss)
2.1 公式解析
二元交叉熵损失的公式如下:
L = − 1 N ∑ i = 1 N ( y i l o g ( y i ) + ( 1 − y i ) l o g ( 1 − y i ) ) L = − 1 N ∑ i = 1 N ( y i log ( y ^ i ) + ( 1 − y i ) log ( 1 − y ^ i ) ) L=−1N∑i=1N(yilog(y^i)+(1−yi)log(1−y^i))L = -\frac{1}{N} \sum_{i=1}^N \left( y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i) \right) L=−1N∑i=1N(yilog(yi)+(1−yi)log(1−yi))L=−N1i=1∑N(y