c++floyd算法

Floyd算法,又称为Floyd-Warshall算法,是一种经典的动态规划算法,用于求解加权图中所有顶点对之间的最短路径问题。该算法由Robert Floyd和Stephen Warshall在1962年分别独立提出。以下是对Floyd算法的详细剖析:

一、算法原理

Floyd算法的基本思想是通过逐步尝试所有顶点作为中间点,来更新任意两点之间的最短路径。算法假设Dis(i,j)为节点i到节点j的最短路径的距离,对于图中的每一个节点k,算法检查是否通过节点k可以使ij的路径更短,即检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立。如果成立,则更新Dis(i,j)Dis(i,k) + Dis(k,j)

二、算法步骤

Floyd算法的实现步骤可以归纳如下:

  1. 初始化
    • 创建一个二维数组dist,用于存储任意两点之间的最短路径长度。初始时,dist[i][j]被设置为节点i到节点j的直接距离(如果节点i和节点j之间有直接连接),否则被设置为无穷大(表示两点之间无直接路径)。
    • 创建一个二维数组path(可选),用于记录最短路径上的中间节点,以便后续恢复最短路径。
  2. 逐步更新
    • 对于图中的每一个节点k(作为中间点):
      • 遍历所有节点对(i, j)
        • 如果dist[i][k] + dist[k][j] < dist[i][j],则更新dist[i][j]dist[i][k] + dist[k][j],并更新path[i][j]k(如果使用了path数组)。
  3. 重复更新
    • 重复步骤2,直到所有节点都作为中间点被考虑过,此时dist数组中存储的就是所有顶点对之间的最短路径长度。
  4. 输出结果
    • 输出更新后的dist数组,即所有顶点对之间的最短路径长度。
    • 如果需要,还可以根据path数组恢复任意两点之间的最短路径。

三、算法复杂度

Floyd算法的时间复杂度为O(n^3),其中n是图中顶点的数量。这是因为算法需要三层嵌套循环来遍历所有顶点对和中间点。尽管时间复杂度较高,但Floyd算法实现简单,且能够一次性求出所有顶点对之间的最短路径,因此在某些场景下非常有用。

四、算法特点

  • 全局性:Floyd算法能够一次性求出图中所有顶点对之间的最短路径,而不仅仅是单个源点到其他所有点的最短路径。
  • 动态规划:Floyd算法采用了动态规划的思想,通过逐步更新最短路径长度来求解问题。
  • 易于实现:Floyd算法的算法逻辑相对简单,容易理解和实现。

五、应用场景

Floyd算法适用于求解任意两点之间的最短路径问题,特别是在需要频繁查询不同顶点对之间最短路径的场景下。然而,由于其较高的时间复杂度,Floyd算法可能不适合处理大规模图数据。

六、示例

假设有一个简单的加权图,其邻接矩阵如下:

0   INF 3   INF  
INF 0   2   INF  
3   2   0   1  
INF INF 1   0

其中INF表示无穷大,即两点之间无直接路径。应用Floyd算法后,可以得到更新后的最短路径长度矩阵:

0   INF 3   2  
INF 0   2   3  
3   2   0   1  
INF 3   1   0

这表明,例如从顶点0到顶点3的最短路径长度为2,且该路径可能经过顶点2(具体路径取决于path数组的内容)。

  • 10
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Floyd算法,也称为Floyd-Warshall算法,是一种用于寻找所有最短路径的动态规划方法,常用于解决图中的最短路径问题。在C++中实现Floyd算法,通常会用邻接矩阵来表示图。以下是一个简单的C++代码示例: ```cpp #include <vector> #include <climits> void floydWarshall(std::vector<std::vector<int>>& graph, int numVertices) { // 初始化距离矩阵,所有顶点间的初始距离为无穷大,除了对角线为0(从顶点到自身的距离) for (int i = 0; i < numVertices; ++i) { for (int j = 0; j < numVertices; ++j) { graph[i][j] = graph[i][j] == INT_MAX ? 0 : graph[i][j]; for (int k = 0; k < numVertices; ++k) { if (graph[i][k] != INT_MAX && graph[k][j] != INT_MAX) graph[i][j] = std::min(graph[i][j], graph[i][k] + graph[k][j]); } } } } // 示例图(这里仅为简化说明,实际使用应替换为实际的邻接矩阵) std::vector<std::vector<int>> createGraph(int vertices) { std::vector<std::vector<int>> graph(vertices, std::vector<int>(vertices, INT_MAX)); // 填充图的边和权重(这里仅作为示例,具体根据实际需求填充) graph = graph = 1; graph[2] = graph = 2; // 更多边和权重... return graph; } int main() { int numVertices = 3; // 例如,如果你有三个顶点 std::vector<std::vector<int>> graph = createGraph(numVertices); floydWarshall(graph, numVertices); // 打印出经过Floyd算法更新后的最短路径矩阵 for (const auto& row : graph) { for (const int dist : row) { if (dist != INT_MAX) { std::cout << dist << " "; } else { std::cout << "∞ "; } } std::cout << std::endl; } return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值