执行路径:
ORACLE的这个功能大大地提高了SQL的执行性能并节省了内存的使用:
我们发现,单表数据的统计比多表统计的速度完全是两个概念.单表统计可能只要0.02秒,但是2张表联合统计就可能要几 十表了.
这是因为ORACLE只对简单的表提供高速缓冲(cache buffering) ,这个功能并不适用于多表连接查询…
数据库管理员必须在init.ora中为这个区域设置合适的参数,当这个内存区域越大,就可以保留更多的语句,
当然被共享的可能性也就越大了.
当你向ORACLE提交一个SQL语句,ORACLE会首先在这块内存中查找相同的语句.
这里需要注明的是,ORACLE对两者采取的是一种严格匹配,要达成共享,SQL语句必须
完全相同(包括空格,换行等).
1,共享的语句必须满足三个条件:
A. 字符的比较
当前被执行的语句和共享池中的语句必须完全相同。
例如:
SELECT * FROM EMP;
和下列每一个都不同
SELECT * from EMP;
Select * From Emp;
SELECT * FROM EMP;
B.两个语句所指的对象必须完全相同:
用户对象名 如何访问
Jack sal_limit private synonym(同义词)
Work_city public synonym
Plant_detail public synonym
Jill sal_limit private synonym
Work_city public synonym
Plant_detail table owner
考虑一下下列SQL语句能否在这两个用户之间共享.
SQL 能否共享 原因
select max(sal_cap) from sal_limit; 不能 每个用户都有一个private synonym - sal_limit , 它们是不同的对象
select count(*) from work_city where sdesc like ‘NEW%’; 能 两个用户访问相同的对象public synonym - work_city
select a.sdesc,b.location from work_city a , plant_detail b where a.city_id = b.city_id 不能
用户jack 通过private synonym访问plant_detail 而jill 是表的所有者,对象不同.
C. 两个SQL语句中必须使用相同的名字的绑定变量(bind variables)
例如:第一组的两个SQL语句是相同的(可以共享),而第二组中的两个语句是不同的(即使在运行时,赋于不同的绑定变量相同的值)
a.
select pin , name from people where pin = :blk1.pin;
select pin , name from people where pin = :blk1.pin;
b.
select pin , name from people where pin = :blk1.ot_ind;
select pin , name from people where pin = :blk1.ov_ind;
2,选择最有效的表名顺序(只在基于规则的优化器中有效)
ORACLE的解析器按照从右到左的顺序处理FROM子句中的表名,因此FROM子句中写在最后的表(基础表 driving table)将被最先处理. 在FROM子句中包含多个表的情况下,你必须选择记录条数最少的表作为基础表.当ORACLE处理多个表时, 会运用排序及合并的方式连接它们.首先,扫描第一个表(FROM子句中最后的那个表)并对记录进行派序,然后扫描第二个表(FROM子句中最后第二个表),最后将所有从第二个表中检索出的记录与第一个表中合适记录进行合并.
例如: 表 TAB1 16,384 条记录
表 TAB2 1 条记录
选择TAB2作为基础表 (最好的方法)
select count() from tab1,tab2 执行时间0.96秒
选择TAB2作为基础表 (不佳的方法)
select count() from tab2,tab1 执行时间26.09秒
如果有3个以上的表连接查询, 那就需要选择交叉表(intersection table)作为基础表, 交叉表是指那个被其他表所引用的表.
例如: EMP表描述了LOCATION表和CATEGORY表的交集.
SELECT *
FROM LOCATION L ,
CATEGORY C,
EMP E
WHERE E.EMP_NO BETWEEN 1000 AND 2000
AND E.CAT_NO = C.CAT_NO
AND E.LOCN = L.LOCN
将比下列SQL更有效率
SELECT *
FROM EMP E ,
LOCATION L ,
CATEGORY C
WHERE E.CAT_NO = C.CAT_NO
AND E.LOCN = L.LOCN
AND E.EMP_NO BETWEEN 1000 AND 2000
3,WHERE子句中的连接顺序
ORACLE采用自下而上的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之前, 那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾.
(低效,执行时间156.3秒)
SELECT …
FROM EMP E
WHERE SAL >; 50000
AND JOB = ‘MANAGER’
AND 25 < (SELECT COUNT() FROM EMP
WHERE MGR=E.EMPNO);
(高效,执行时间10.6秒)
SELECT …
FROM EMP E
WHERE 25 < (SELECT COUNT() FROM EMP
WHERE MGR=E.EMPNO)
AND SAL >; 50000
AND JOB = ‘MANAGER’;
4,SELECT子句中避免使用 ‘ * ‘ .
当你想在SELECT子句中列出所有的COLUMN时,使用动态SQL列引用 ‘’ 是一个方便的方法.不幸的是,这是一个非常低效的方法. 实际上,ORACLE在解析的过程中, 会将’’ 依次转换成所有的列名, 这个工作是通过查询数据字典完成的, 这意味着将耗费更多的时间.
5,减少访问数据库的次数
当执行每条SQL语句时, ORACLE在内部执行了许多工作: 解析SQL语句, 估算索引的利用率, 绑定变量 , 读数据块等等. 由此可见, 减少访问数据库的次数 , 就能实际上减少ORACLE的工作量.
以下有三种方法可以检索出雇员号等于0342或0291的职员.
方法1 (最低效)
SELECT EMP_NAME , SALARY , GRADE
FROM EMP
WHERE EMP_NO = 342;
SELECT EMP_NAME , SALARY , GRADE
FROM EMP
WHERE EMP_NO = 291;
方法2 (次低效)
DECLARE
CURSOR C1 (E_NO NUMBER) IS
SELECT EMP_NAME,SALARY,GRADE
FROM EMP
WHERE EMP_NO = E_NO;
BEGIN
OPEN C1(342);
FETCH C1 INTO …,…,… ;
OPEN C1(291);
FETCH C1 INTO …,…,… ;
CLOSE C1;
END;
方法3 (高效)
SELECT A.EMP_NAME , A.SALARY , A.GRADE,
B.EMP_NAME , B.SALARY , B.GRADE
FROM EMP A,EMP B
WHERE A.EMP_NO = 342
or B.EMP_NO = 291;
6,删除重复记录
最高效的删除重复记录方法 ( 因为使用了ROWID)
DELETE FROM EMP E
WHERE E.ROWID > (SELECT MIN(X.ROWID)
FROM EMP X
WHERE X.EMP_NO = E.EMP_NO);
7, 用TRUNCATE替代DELETE
当删除表中的记录时,在通常情况下, 回滚段(rollback segments ) 用来存放可以被恢复的信息. 如果你没有COMMIT事务,ORACLE会将数据恢复到删除之前的状态(准确地说是恢复到执行删除命令之前的状况)
而当运用TRUNCATE时, 回滚段不再存放任何可被恢复的信息.当命令运行后,数据不能被恢复.因此很少的资源被调用,执行时间也会很短.
(译者按: TRUNCATE只在删除全表适用,TRUNCATE是DDL不是DML)
8,尽量多使用COMMIT
只要有可能,在程序中尽量多使用COMMIT, 这样程序的性能得到提高,需求也会因为COMMIT所释放的资源而减少:
COMMIT所释放的资源:
a. 回滚段上用于恢复数据的信息.
b. 被程序语句获得的锁
c. redo log buffer 中的空间
d. ORACLE为管理上述3种资源中的内部花费
(译者按: 在使用COMMIT时必须要注意到事务的完整性,现实中效率和事务完整性往往是鱼和熊掌不可得兼)
9,用EXISTS替代IN
在许多基于基础表的查询中,为了满足一个条件,往往需要对另一个表进行联接.在这种情况下, 使用EXISTS(或NOT EXISTS)通常将提高查询的效率.
低效:
SELECT *
FROM EMP (基础表)
WHERE EMPNO > 0
AND DEPTNO IN (SELECT DEPTNO
FROM DEPT
WHERE LOC = ‘MELB’)
高效:
SELECT *
FROM EMP (基础表)
WHERE EMPNO > 0
AND EXISTS (SELECT ‘X’
FROM DEPT
WHERE DEPT.DEPTNO = EMP.DEPTNO
AND LOC = ‘MELB’)
相对来说,用NOT EXISTS替换NOT IN 将更显著地提高效率
10,用NOT EXISTS替代NOT IN
在子查询中,NOT IN子句将执行一个内部的排序和合并. 无论在哪种情况下,NOT IN都是最低效的 (因为它对子查询中的表执行了一个全表遍历). 为了避免使用NOT IN ,我们可以把它改写成外连接(Outer Joins)或NOT EXISTS.
例如:
SELECT …
FROM EMP
WHERE DEPT_NO NOT IN (SELECT DEPT_NO
FROM DEPT
WHERE DEPT_CAT=’A’);
为了提高效率.改写为:
复制代码
(方法一: 高效)
SELECT ….
FROM EMP A,DEPT B
WHERE A.DEPT_NO = B.DEPT(+)
AND B.DEPT_NO IS NULL
AND B.DEPT_CAT(+) = ‘A’
(方法二: 最高效)
SELECT ….
FROM EMP E
WHERE NOT EXISTS (SELECT ‘X’
FROM DEPT D
WHERE D.DEPT_NO = E.DEPT_NO
AND DEPT_CAT = ‘A’);
当然,最高效率的方法是有表关联.直接两表关系对联的速度是最快的!
11,index(索引)
使用索引(在表中特定列上使用索引) 提高查询效率,对数据进行检查(检查数据完整性 – 唯一索引)
什么时候适合使用索引提高效率
1.表中数据量大
2.该列重复数据非常小
使用索引的劣势
1.索引降低dml操作的效率
2.如果表数据量小,重复数据多,使用索引反而会降低查询效率
索引常用的分类
普通索引 – 提高查询效率
唯一索引 – 检查数据完整性,提高效率
复合索引 – 针对同时查询的多个列,同时建立索引
create index idx_emp_empno on emp(empno);
create unique index idx_emp_empno on emp(empno);
select * from emp where mgr=‘7902’ and job=‘SALESMAN’;
create index idx_emp_job_mgr on emp(job,mgr);
12,用sql工具找出低效sql:
SELECT EXECUTIONS , DISK_READS, BUFFER_GETS,
ROUND((BUFFER_GETS-DISK_READS)/BUFFER_GETS,2) Hit_radio,
ROUND(DISK_READS/EXECUTIONS,2) Reads_per_run,
SQL_TEXT
FROM V$SQLAREA
WHERE EXECUTIONS>;0
AND BUFFER_GETS >; 0
AND (BUFFER_GETS-DISK_READS)/BUFFER_GETS < 0.8
ORDER BY 4 DESC;
1.sql语言是否完全相同 空格 大小写问题
select * from emp;
select * from emp;
select * from EMP;
2.绑定变量的使用
select * from emp where empno=10; Statement
select * from emp where empno=:empno; PreparedStatement
3.减少或避免*的出现 号需要先访问数据字典表,找到该表中所有的字段名,然后替换号
select EMPNO,ENAME,JOB from EMP where EMPNO=:EMPNO;
4.多表查询时,基表的选择 dept 表1行数据 emp 1000行数据 from后跟的最后一张表叫基表
select count(*) from user_tables;
select count(owner) from dba_tables;
select count(distinct owner) from dba_tables;
5.将小表作为基表,放到from最后一个位置
select * from emp,dept where emp.deptno = dept.deptno;
6.员工表emp 部门表dept 绩效表 empno days 三张表,将中间表作为基表
select * from dept,jixiao,emp where emp.empno=jixiao.empno and emp.deptno=dept.deptno;
select * from emp join dept
on emp.deptno=dept.deptno
join jixiao
on emp.empno = jixiao.empno;
7.显示员工编号,部门号,工资 (部门编号为 10 并且工资大于3000)
where 先写表连接,后写筛选条件
筛选条件 从后往前执行,剩余数据最少的条件放到后面位置
select e.empno,d.deptno,sal
from emp e, dept d
where e.deptno = d.deptno and d.deptno=10 and sal>3000 ;
8.删除重复记录 rowid
select emp.*,rowid from emp;
9.创建表结构
create table emp1 as select * from scott.emp;
select * from emp1;
insert into emp1 select * from scott.emp where sal>3000;
select count(empno) from emp1;
select count(distinct empno) from emp1;
10.删除重复记录
select * from emp1 e where rowid > (select min(rowid) from emp1 where e.empno=emp1.empno);
delete from emp1 e where rowid > (select min(rowid) from emp1 where e.empno=emp1.empno);
delete from emp1 e where rowid < (select max(rowid) from emp1 where e.empno=emp1.empno);
11.删除所有数据 truncate 代替delete删除所有数据
delete truncate
12.大批量sql中多使用commit
13.用EXISTS替代IN
select * from emp where deptno=10 or deptno=20;
select * from emp where deptno in (10,20);
select * from dept;
SELECT *
FROM EMP
WHERE EMPNO > 0
AND DEPTNO IN (SELECT DEPTNO
FROM DEPT
WHERE LOC = ‘NEW YORK’);
SELECT *
FROM EMP
WHERE EMPNO > 0
AND EXISTS (SELECT ‘X’
FROM DEPT
WHERE DEPT.DEPTNO = EMP.DEPTNO
AND LOC = ‘NEW YORK’);
SELECT *
FROM EMP
WHERE EMPNO > 0
AND DEPTNO not IN (SELECT DEPTNO
FROM DEPT
WHERE LOC = ‘NEW YORK’);
SELECT *
FROM EMP
WHERE EMPNO > 0
AND not EXISTS (SELECT ‘X’
FROM DEPT
WHERE DEPT.DEPTNO = EMP.DEPTNO
AND LOC = ‘NEW YORK’);
ALTER SYSTEM FLUSH SHARED_POOL;
ALTER SYSTEM FLUSH BUFFER_CACHE;
ALTER SYSTEM FLUSH GLOBAL CONTEXT;
查看sql语句的执行效率
SELECT EXECUTIONS , DISK_READS, BUFFER_GETS,
ROUND((BUFFER_GETS-DISK_READS)/BUFFER_GETS,2) Hit_radio,
ROUND(DISK_READS/EXECUTIONS,2) Reads_per_run,
SQL_TEXT
FROM V$SQLAREA
WHERE EXECUTIONS>0
AND BUFFER_GETS > 0
AND (BUFFER_GETS-DISK_READS)/BUFFER_GETS < 0.8
ORDER BY 4 DESC;
如果sql锁定,释放锁
SELECT s.sid, s.serial#, s.username, s.schemaname, s.osuser, s.process, s.machine,
s.terminal, s.logon_time, l.type
FROM vsessions,v session s, vsessions,vlock l
WHERE s.sid = l.sid
AND s.username=‘SCOTT’
ORDER BY sid;
alter system kill session ‘sid,serial#’;
alter system kill session ‘130,1737’;