首先,大于工资的面额可以直接加起来,剩下的就是小于工资的面额了。
对于这些,可以考虑从大到小贪心,每种面额只要当前和不超过工资,就把它用上,做完后如果还不够,则从小往大找一张钱补上。
可以证明,这样的做法取得的一定是最接近目标钱数的,也就是浪费最少。
把这样一次需要花费的各个面额的钱的数量保存起来,然后用除法加速。
代码有点乱。
#include<iostream>
#include<cmath>
#include<cstdio>
#include<sstream>
#include<cstdlib>
#include<string>
#include<string.h>
#include<cstring>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<stack>
#include<iterator>
#include<queue>
#include<ctime>
#include<bitset>
#define eps 1e-6
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
//#define ll __int64
#define ll long long
#define lson l,m,(rt<<1)
#define rson m+1,r,(rt<<1)|1
#define M 1000000007
#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;
struct node
{
int v;
int c;
}m[30];
struct node2
{
int c;
int id;
}t;
bool cmp(node x,node y)
{
return x.v<y.v;
}
int main()
{
int n,p;
while(~scanf("%d%d",&n,&p))
{
for(int i=1;i<=n;i++)
{
scanf("%d%d",&m[i].v,&m[i].c);
}
sort(m+1,m+1+n,cmp);
int ans=0;
int j;
for(j=n;j>=1;j--)
{
if(m[j].v<p) break;
ans+=m[j].c;
}
n=j;
while(1)
{
int now=0;
vector<node2> state;
for(int i=n;i>=1;i--)
{
if(m[i].v+now<=p)
{
t.c=min((p-now)/m[i].v,m[i].c); //可以拿t.c张当前面额的
if(t.c==0) continue;
t.id=i; //拿的钱的编号
state.push_back(t); //付一次工资的各个面额钱的状态
m[i].c-=t.c;
now+=t.c*m[i].v;
}
}
if(now<p)
{
for(int i=1;i<=n;i++)
{
if(now+m[i].v>=p&&m[i].c)
{
now+=m[i].v;
m[i].c--;
int ok=0;
for(int j=0;j<state.size();j++)
{
if(i==state[j].id)
{
ok=1;
state[j].c++;
break;
}
}
if(!ok)
{
t.c=1;
t.id=i;
state.push_back(t);
}
break;
}
}
}
if(now<p) break;
ans++;
int times=0x7fffffff;
for(int i=0;i<state.size();i++)
{
times=min(times,m[state[i].id].c/state[i].c);
}
for(int i=0;i<state.size();i++)
{
m[state[i].id].c-=times*state[i].c;
}
ans+=times;
}
cout<<ans<<endl;
}
return 0;
}