解决输出为nan的问题

在训练网络的时候,发现输出全都是nan,这个时候很大可能是数值不稳定,比如除数太小,不稳定,或者是log里面的参数太小,不稳定,这个时候在可能出现运算不稳定的地方增加一些稳定系数就好了,比如:

1.在分母的位置增加一个稳定数

exp_st_sum = exp_st_with_target.sum(dim=1, keepdim=True) + 1e-6
exp_st_rate = exp_st_with_target / exp_st_sum
    

2.在log里增加稳定系数

loss_gt = F.nll_loss(torch.log(exp_gt_rate + 1e-6), labels)

这样就能解决出现的问题了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值