scipy求一重积分:点击跳转.
scipy求二重(多重)积分:点击跳转.
~
i n t e g r a t e ( ) integrate() integrate()可以计算定积分和不定积分:
- i n t e g r a t e ( f ( x ) , x ) : integrate(f(x), x): integrate(f(x),x):计算不定积分 ∫ f ( x ) d x \int f(x) dx ∫f(x)dx
- i n t e g r a t e ( f ( x ) , ( x , a , b ) ) : integrate(f(x), (x, a, b)): integrate(f(x),(x,a,b)):计算定积分 ∫ 0 a f ( x ) d x \int_{0}^{a} f(x) dx ∫0af(x)dx
如果要对多个变量计算多重积分,只需要将被积分的变量依次列出即可
- i n t e g r a t e ( f ( x , y ) , x , y ) : integrate(f(x, y), x, y): integrate(f(x,y),x,y):计算双重不定积分 ∫ ∫ f ( x , y ) d x d y \int\int f(x, y) dxdy ∫∫f(x,y)dxdy
- i n t e g r a t e ( f ( x , y ) , ( x , a , b ) , ( y , c , d ) : integrate(f(x, y), (x, a, b), (y, c, d): integrate(f(x,y),(x,a,b),(y,c,d):计算双重定积分 ∫ c d ∫ a b f ( x , y ) d x d y \int_{c}^{d}\int_{a}^{b} f(x, y) dxdy ∫cd∫abf(x,y)dxdy
更高重积分同理
1.一重积分
问题1:求解如下一重定积分:
F
(
x
)
=
∫
0
1
x
2
+
e
x
+
1
d
x
.
F(x) = \int_0^1 x^{2}+e^{x}+1 ~dx\,.
F(x)=∫01x2+ex+1 dx.
程序, 如下
from sympy import *
x = symbols('x')
print(integrate(x**2 + exp(x) + 1, (x, 0, 1)))
结果:
1/3 + E
问题2:求解如下一重不定积分:
F ( x ) = ∫ x e x ( e x + 1 ) 2 F(x)=\int \frac{xe^{x}}{(e^{x}+1)^{2}} F(x)=∫(ex+1)2xex
程序, 如下
from sympy import *
x = symbols('x')
print(integrate(x*exp(x)/(exp(x)+1)**2, x))
结果
x - x/(exp(x) + 1) - log(exp(x) + 1)
2.二重积分(多重积分)
问题1:求解如下二重定积分
F
(
x
,
y
)
=
∫
0
1
/
2
∫
0
1
x
y
d
x
d
y
.
F(x, y)= \int_{0}^{1/2}\int_{0}^{1} xy~dxdy .
F(x,y)=∫01/2∫01xy dxdy.
程序1,如下:
from sympy import *
x, y = symbols('x y')
print(integrate(x*y, (x, 0, 1), (y, 0, 1/2)))
结果:
0.0625000000000000