5天搞定深度学习入门系列—15588人已学习
课程介绍
我们这门课程是面向0基础学员,从上世纪60年代基础的的单层感知器开始学习,从基础的知识开始,进行体系化的学习。 课程会包含神经网络领域大多数重要分支,并通过这些分支延伸到如今热门的的深度置信网络DBN,卷积神经网络CNN,深度残差网络RES和长短时记忆网络LSTM。 帮助大家从人工智能神经网络的新手变成高手。
课程收益
从最基础的知识开始入手,带着大家进行体系化的学习,让大家一步一步深入深度学习神经网络领域。
讲师介绍
覃秉丰 更多讲师课程
机器学习,深度学习神经网络领域多年开发研究经验,精通算法原理与编程实践。曾完成过多项图像识别,目标识别,语音识别的实际项目,经验丰富。关注深度学习领域各种开源项目,如TensorFlow,Caffe,Torch等。喜欢理论与实践相结合的教学风格,课程编排由浅入深,体系清晰完整。
课程大纲
第1章:深度学习入门
1. 神经网络概述 11:05
2. 神经网络发展史 11:33
3. 从0到1-单层感知器 18:49
4. 从0到1-单层感知器(代码实践) 22:38
5. 网络优化-线性神经网络,delta学习规则,梯度下降法 20:15
6. 网络优化-线性神经网络,delta学习规则,梯度下降法(代码) 21:37
7. 进军多层-BP神经网络介绍 29:21
8. 进军多层-BP神经网络介绍(代码实践1) 20:32
9. 进军多层-BP神经网络介绍(代码实践2) 38:22
10. 深入理解BP神经网络(论文讲解) 27:12
11. 过拟合,以及google神经网络小工具 33:06
12. Hopfield神经网络 34:51
13. Hopfield神经网络(代码实践) 11:55
14. 玻尔兹曼机 38:57
15. 受限玻尔兹曼机RBM 27:41
16. 受限玻尔兹曼机RBM(代码实践) 4:36
大家可以点击【 查看详情】查看我的课程
课程介绍
我们这门课程是面向0基础学员,从上世纪60年代基础的的单层感知器开始学习,从基础的知识开始,进行体系化的学习。 课程会包含神经网络领域大多数重要分支,并通过这些分支延伸到如今热门的的深度置信网络DBN,卷积神经网络CNN,深度残差网络RES和长短时记忆网络LSTM。 帮助大家从人工智能神经网络的新手变成高手。
课程收益
从最基础的知识开始入手,带着大家进行体系化的学习,让大家一步一步深入深度学习神经网络领域。
讲师介绍
覃秉丰 更多讲师课程
机器学习,深度学习神经网络领域多年开发研究经验,精通算法原理与编程实践。曾完成过多项图像识别,目标识别,语音识别的实际项目,经验丰富。关注深度学习领域各种开源项目,如TensorFlow,Caffe,Torch等。喜欢理论与实践相结合的教学风格,课程编排由浅入深,体系清晰完整。
课程大纲
第1章:深度学习入门
1. 神经网络概述 11:05
2. 神经网络发展史 11:33
3. 从0到1-单层感知器 18:49
4. 从0到1-单层感知器(代码实践) 22:38
5. 网络优化-线性神经网络,delta学习规则,梯度下降法 20:15
6. 网络优化-线性神经网络,delta学习规则,梯度下降法(代码) 21:37
7. 进军多层-BP神经网络介绍 29:21
8. 进军多层-BP神经网络介绍(代码实践1) 20:32
9. 进军多层-BP神经网络介绍(代码实践2) 38:22
10. 深入理解BP神经网络(论文讲解) 27:12
11. 过拟合,以及google神经网络小工具 33:06
12. Hopfield神经网络 34:51
13. Hopfield神经网络(代码实践) 11:55
14. 玻尔兹曼机 38:57
15. 受限玻尔兹曼机RBM 27:41
16. 受限玻尔兹曼机RBM(代码实践) 4:36
大家可以点击【 查看详情】查看我的课程