题意:给定一棵树,选择尽量少的结点,使得每个没有选中的结点至少和一个已选的结点相邻
题解:只要保证每条边的两边至少有一个结点是被选中的就可以保证每个没有选中的结点至少和一个已选的结点相邻,其实就是最小点覆盖,跑一遍匈牙利算法模板即可,因为是无向图还要除以二
#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<cmath>
#include<stdlib.h>
#include <string.h>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<time.h>
using namespace std;
#define MAX_N 1505
#define inf 0x3f3f3f3f
#define LL long long
#define ull unsigned long long
const LL INF = 1e18;
const int mod = 1e8+7;
typedef pair<double, int>P;
struct Edge
{
int to, next;
}edge[MAX_N*MAX_N];
int head[MAX_N], tot;
void init()
{
tot = 0;
memset(head, -1, sizeof(head));
}
void addedge(int u, int v)
{
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
}
int linker[MAX_N];
bool used[MAX_N];
int uN;
bool dfs(int u)
{
for(int i=head[u]; i!=-1; i=edge[i].next) {
int v = edge[i].to;
if(!used[v]) {
used[v] = true;
if(linker[v] == -1 || dfs(linker[v])) {
linker[v] = u;
return true;
}
}
}
return false;
}
int hungry()
{
int res = 0;
memset(linker, -1, sizeof(linker));
for(int u=0; u<uN; u++) {
memset(used, false, sizeof(used));
if(dfs(u))
res++;
}
return res;
}
int main()
{
while(cin >> uN) {
int n, m;
init();
for(int i=0; i<uN; i++) {
scanf("%d:(%d)", &n, &m);
for(int i=0; i<m; i++) {
int x;
scanf("%d", &x);
addedge(x, n);
addedge(n, x);
}
}
cout << hungry() / 2 << endl;
}
}