LA Strategic Game 【最小点覆盖】

题意:给定一棵树,选择尽量少的结点,使得每个没有选中的结点至少和一个已选的结点相邻


题解:只要保证每条边的两边至少有一个结点是被选中的就可以保证每个没有选中的结点至少和一个已选的结点相邻,其实就是最小点覆盖,跑一遍匈牙利算法模板即可,因为是无向图还要除以二


#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<cmath>
#include<stdlib.h>
#include <string.h>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<time.h>
using namespace std;
#define MAX_N 1505
#define inf 0x3f3f3f3f
#define LL long long
#define ull unsigned long long
const LL INF = 1e18;
const int mod = 1e8+7;
typedef pair<double, int>P;

struct Edge
{
    int to, next;
}edge[MAX_N*MAX_N];
int head[MAX_N], tot;
void init()
{
    tot = 0;
    memset(head, -1, sizeof(head));
}
void addedge(int u, int v)
{
    edge[tot].to = v;
    edge[tot].next = head[u];
    head[u] = tot++;
}
int linker[MAX_N];
bool used[MAX_N];
int uN;
bool dfs(int u)
{
    for(int i=head[u]; i!=-1; i=edge[i].next) {
        int v = edge[i].to;
        if(!used[v]) {
            used[v] = true;
            if(linker[v] == -1 || dfs(linker[v])) {
                linker[v] = u;
                return true;
            }
        }
    }
    return false;
}
int hungry()
{
    int res = 0;
    memset(linker, -1, sizeof(linker));
    for(int u=0; u<uN; u++) {
        memset(used, false, sizeof(used));
        if(dfs(u))
            res++;
    }
    return res;
}
int main()
{
    while(cin >> uN) {
        int n, m;
        init();
        for(int i=0; i<uN; i++) {
            scanf("%d:(%d)", &n, &m);
            for(int i=0; i<m; i++) {
                int x;
                scanf("%d", &x);
                addedge(x, n);
                addedge(n, x);
            }
        }
        cout << hungry() / 2 << endl;
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值