FCN
FCN的输出是粗糙的,不平滑的。其原因是由于使用卷积层向下采样32次,导致最终特征层的信息丢失,为了解决这个问题,本文还提出了另外两种架构FCN-16、FCN-8。在FCN-16中,来自前一个池化层的信息与最终的feature map一起使用,因此现在网络的任务是学习16x向上的采样,这比FCN-32更好。FCN-8试图通过包含来自前一个池层的信息来使它更好
U-Net
使用反卷积进行上采样,使用跳连弥补信息丢失
DeepLab
1.空洞卷积
2.ASPP
3.RCF
spp用于解决图像拉伸或者裁剪去统一图片的尺寸,但是会造成信息丢失,失真等问题,spp通过不同的池化范围扩大感受野,aspp通过不同的膨胀率扩大感受野
池化是一种有助于减少神经网络参数数量的操作,但它也带来了不变性。不变性是指神经网络不受输入中轻微平动的影响。由于pooling得到的这一特性,神经网络得到的分割输出是粗糙的,边界没有具体定义。
作者建议通过使用大型内核作为网络的一部分来实现这一点,从而实现密集的连接,从而获得更多的信息,为了减少参数的数量,一个kx k滤波器进一步分裂成1xk和kx1
Boundary Refinement block
类似于Resnet中的剩余块,由一个快捷连接和一个剩余连接组成,将其相加得到结果
Global Convolution Network
建立的分类网络具有平移和旋转的不变性,因此不重视位置信息,而定位涉及到从位置得到精确的细节。因此,这两项任务在本质上是矛盾的。大多数分割算法更重视定位,如上图中的第二个,因此忽略了全局上下文
See More Than Once – KSAC for Semantic Segmentation
在ASPP中,不同的并行层之间没有信息共享,从而影响了每一层内核的泛化能力。此外,由于每一层都迎合不同的训练样本集(小对象对小氮率,大对象对大氮率),因此每一平行层的数据量较少,从而影响整体的通用性。网络中的参数数量也会随着参数数量的增加而线性增加,从而导致过拟合。
为了解决这些问题,作者提出了一种新的网络结构,称为核共享Atrous卷积(KSAC)。从上图中可以看出,不是每个并行层都有一个不同的核,而是在每个并行层共享一个核,从而提高了网络的泛化能力