Dijkstra算法的两种写法和时间复杂度计算

Dijkstra算法是一种单源最短路径算法,是 BFS 的延伸

基于集合的写法 (适用于稠密图)

算法

  1. 初始化距离向量 d d d(长度为 V V V),起点设为0,其他点设为无穷大
  2. 初始化集合 Q Q Q,含义为尚未确定距离的顶点的集合,将所有顶点加入
  3. Q Q Q 中弹出距离最小的顶点 u u u
  4. 遍历 u u u 的所有仍在 Q Q Q 中的邻居 w w w, 判断 d [ u ] + l e n g t h ( u , w ) < d [ w ] d[u] + length(u,w) < d[w] d[u]+length(u,w)<d[w]是否成立,如果成立,更新 d [ w ] = d [ u ] + l e n g t h ( u , w ) d[w] = d[u] + length(u,w) d[w]=d[u]+length(u,w), 否则无视
  5. 回到 3 开始循环,直到 Q Q Q 为空集

示例代码

def dijkstra(n, edges, weights, start, end):
	# Construct graph
	neighbors = [[] for j in range(n)]
	for j, edge in enumerate(edges):
		neighbors[edge[0]].append((edge[1], weights[j]))
        neighbors[edge[1]].append((edge[
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值