Dijkstra算法的两种写法和时间复杂度计算
Dijkstra算法是一种单源最短路径算法,是 BFS 的延伸
基于集合的写法 (适用于稠密图)
算法
- 初始化距离向量 d d d(长度为 V V V),起点设为0,其他点设为无穷大
- 初始化集合 Q Q Q,含义为尚未确定距离的顶点的集合,将所有顶点加入
- 从 Q Q Q 中弹出距离最小的顶点 u u u
- 遍历 u u u 的所有仍在 Q Q Q 中的邻居 w w w, 判断 d [ u ] + l e n g t h ( u , w ) < d [ w ] d[u] + length(u,w) < d[w] d[u]+length(u,w)<d[w]是否成立,如果成立,更新 d [ w ] = d [ u ] + l e n g t h ( u , w ) d[w] = d[u] + length(u,w) d[w]=d[u]+length(u,w), 否则无视
- 回到 3 开始循环,直到 Q Q Q 为空集
示例代码
def dijkstra(n, edges, weights, start, end):
# Construct graph
neighbors = [[] for j in range(n)]
for j, edge in enumerate(edges):
neighbors[edge[0]].append((edge[1], weights[j]))
neighbors[edge[1]].append((edge[