Dijkstra算法的两种写法和时间复杂度计算

Dijkstra算法是一种单源最短路径算法,是 BFS 的延伸

基于集合的写法 (适用于稠密图)

算法

  1. 初始化距离向量 d d d(长度为 V V V),起点设为0,其他点设为无穷大
  2. 初始化集合 Q Q Q,含义为尚未确定距离的顶点的集合,将所有顶点加入
  3. Q Q Q 中弹出距离最小的顶点 u u u
  4. 遍历 u u u 的所有仍在 Q Q Q 中的邻居 w w w, 判断 d [ u ] + l e n g t h ( u , w ) < d [ w ] d[u] + length(u,w) < d[w] d[u]+length(u,w)<d[w]是否成立,如果成立,更新 d [ w ] = d [ u ] + l e n g t h ( u , w ) d[w] = d[u] + length(u,w) d[w]=d[u]+length(u,w), 否则无视
  5. 回到 3 开始循环,直到 Q Q Q 为空集

示例代码

def dijkstra(n, edges, weights, start, end):
	# Construct graph
	neighbors = [[] for j in range(n)]
	for j, edge in enumerate(edges):
		neighbors[edge[0]].append((edge[1], weights[j]))
        neighbors[edge[1]].append((edge[0], weights[j]))
    
    # Initialize d
    d = [float('inf')] * n
    d[start] = 0

	# Initialize Q
	Q = set()
	for j in range(n):
		Q.add(j)

	# Start loop
	while Q:
		# Extract-min from Q
		minv = float('inf')
		u = -1
		for j, x in enumerate(d):
		    if x < minv and x in Q:
		        minv = x
		        u = j
		Q.remove(u)
	
		# Update neighbors of u
		for e in neighbors[u]:
			w = e[0]
			weight = e[1]
			if w in Q:
				alt = d[u] + weight
				if alt < d[w]:
					d[w] = alt
	return d[end]

复杂度

  1. 初始化 d d d Q Q Q 均为 O ( V ) O(V) O(V)
  2. 外层循环,每次删除一个顶点,共 V V V 个顶点,故为 O ( V ) O(V) O(V)
  3. 内层 Extrac-min 为 O ( V ) O(V) O(V),遍历邻居为 O ( N ) O(N) O(N) N N N 为每个节点最大的邻居数)

综上,复杂度为 O ( V ) + O ( V 2 ) + O ( V N ) ∼ O ( V 2 ) O(V) + O(V^2) + O(VN) \sim O(V^2) O(V)+O(V2)+O(VN)O(V2)

基于优先队列的写法(适用于稀疏图)

算法

  1. 初始化距离向量 d d d(长度为 V V V),起点设为0,其他点设为无穷大
  2. 初始化优先队列 Q Q Q: 对所有顶点 v v v, 将 ( d [ v ] , v ) (d[v], v) (d[v],v) 推入 Q Q Q
  3. 初始化 v i s i t e d visited visited 为空集
  4. Q Q Q 中弹出距离最小的顶点 u u u, 加入 v i s i t e d visited visited
  5. 遍历 u u u 的所有未在 v i s i t e d visited visited 中的邻居 w w w, 判断 d [ u ] + l e n g t h ( u , w ) < d [ w ] d[u] + length(u,w) < d[w] d[u]+length(u,w)<d[w]是否成立,如果成立,更新 d [ w ] = d [ u ] + l e n g t h ( u , w ) d[w] = d[u] + length(u,w) d[w]=d[u]+length(u,w) 并将 ( d [ w ] , w ) (d[w], w) (d[w],w) 推入 Q Q Q, 否则无视
  6. 回到 3 开始循环,直到 Q Q Q 为空集

示例代码

import heapq
def dijkstra(n, edges, weights, start, end):
	# Construct graph
	neighbors = [[] for j in range(n)]
	for j, edge in enumerate(edges):
		neighbors[edge[0]].append((edge[1], weights[j]))
        neighbors[edge[1]].append((edge[0], weights[j]))
    
    # Initialize d
    d = [float('inf')] * n
    d[start] = 0

	# Initialize Q
	Q = []
	for v in range(n):
		heapq.heappush(Q, (d[v], v))
	
	# Initialize visited
	visited = set()
	
	# Start loop
	while Q:
		u = heapq.heappop(Q)[1]
		if u in visited:
			continue
		visited.add(u)
		for e in neighbors[u]:
			w = e[0]
			if w not in visited:
				weight = e[1]
				alt = d[u] + weight
				if alt < d[w]:
					d[w] = alt
					heapq.heappush(Q, (d[w], w))
	return d[end]

复杂度

  1. 初始化 d d d O ( V ) O(V) O(V),初始化 Q Q Q O ( V log ⁡ V ) O(V\log V) O(VlogV)
  2. 外层循环 O ( V ) O(V) O(V)
  3. 内层循环 (遍历所有邻居)为 O ( N ) O(N) O(N)
  4. 更新邻居为 O ( log ⁡ ( V ) ) O(\log(V)) O(log(V))

综上,总复杂度为 O ( V N log ⁡ V ) O(VN\log V) O(VNlogV) (或写为 O ( E log ⁡ V ) O(E\log V) O(ElogV)

两者比较

基于优先队列的写法节约了每次寻找距离最小顶点的开销 O ( V ) O(V) O(V),然而增加了每次更新邻居的开销 O ( log ⁡ V ) O(\log V) O(logV). 当图稀疏时, V 2 ≫ E V^2 \gg E V2E,后者更优;当图稠密时, V 2 ∼ E V^2 \sim E V2E,前者更优

Dijkstra算法是一种用于求解单源最短路径的算法,其时间复杂度和空间复杂度如下: 假设图中有n个节点。 1. 时间复杂度Dijkstra算法使用贪心策略,从起始节点开始,逐步扩展最短路径集合,直到找到所有节点的最短路径或无法到达的节点。在每一次扩展的过程中,需要遍历所有未访问的节点,并更新起始节点到该节点的距离。因此,Dijkstra算法时间复杂度可以通过两个方面来分析: - 使用邻接矩阵表示图的情况下,每次查找最小距离节点需要O(n)的时间复杂度,总共需要进行n次查找。同时,每次更新最短路径需要O(n)的时间复杂度。因此,总时间复杂度为O(n^2)。 - 使用优先队列(如最小堆)优化查找最小距离节点的过程,每次查找和更新最短路径的时间复杂度为O(logn)。因此,总时间复杂度为O((n + m)logn),其中m表示边的数量。 2. 空间复杂度:Dijkstra算法需要使用一个大小为n的数组来存储起始节点到每个节点的最短距离。同时,还需要使用一个大小为n的数组来标记节点是否已被访问。因此,Dijkstra算法的空间复杂度为O(n)。 需要注意的是,Dijkstra算法适用于非负权边的图,且不能处理存在负权边的情况。在实际应用中,如果图的规模很大,可以考虑使用更高效的单源最短路径算法,如A*算法或使用堆优化的Dijkstra算法(如Dial算法、Fibonacci堆等),以减少时间复杂度和空间复杂度。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值