向量范数的维基百科介绍

范数的一般性质:

  • 严格正定性:对任意矩阵A \in \mathcal{M}_{m, n}(\mathbb{K}),都有\|A\|\ge 0,且等号成立当且仅当A=0
  • 线性性:对任意系数\alpha \in \mathbb{K}、任意矩阵A \in \mathcal{M}_{m, n}(\mathbb{K}),都有\|\alpha A\|=|\alpha| \|A\|
  • 三角不等式:任意矩阵A, B \in \mathcal{M}_{m, n}(\mathbb{K}),都有\|A+B\| \le \|A\|+\|B\|。则称之为\mathcal{M}_{m, n}(\mathbb{K})上的一个矩阵范数。

此外,某些定义在方块矩阵组成空间\mathcal{M}_{n}(\mathbb{K})上的矩阵范数满足一个或多个以下与的条件:

  • 一致性\|AB\| \le \|A\|\|B\|
  • 共轭转置相等条件\|A\|=\|A^*\|。其中A^*表示矩阵A共轭转置(在实矩阵中就是普通转置)。

这里主要看下p-范数:

p-范数诱导的矩阵范数

VW中装备的向量范数都是p-范数的时候,诱导的矩阵范数也称为矩阵的诱导p-范数。具体来说就是:

 \left\| A \right\|_p = \max \limits_{x \ne 0} \frac{\left\| A x \right\|_p}{\left\| x \right\|_p} = \max \limits_{x \ne 0} \frac{\left(\sum_{i=1}^n | \sum_{j=1}^m A_{ij} x_j |^p\right)^{1/p}}{\left(\sum_{i=1}^m |  x_i |^p\right)^{1/p}}

p=1p=\infty的情况下,其范数可以以下方式计算:

 \begin{align}& \left \| A \right \| _1 = \max \limits _{1 \leq j \leq n} \sum _{i=1} ^m | a_{ij} | \\& \left \| A \right \| _\infty = \max \limits _{1 \leq i \leq m} \sum _{j=1} ^n | a_{ij} | .\end{align}

这些与矩阵的Schatten p-范数不同,也可以用 \left \| A \right \| _p 。来表示。

p = 2(欧几里德范数)且m = n(方阵)时,诱导的矩阵范数就是谱范数。矩阵A的谱范数是A最大的奇异值半正定矩阵A*A的最大特征值的平方根:

\left \| A \right \| _2=\sqrt{\lambda_{\text{max}}(A^* A)}

其中A*代表A共轭转置

任何诱导的矩阵范数都满足此不等式

\left \| A \right \| \ge \rho(A),

其中ρ(A)是A谱半径。事实上,可以证明ρ(A)是A的所有诱导范数的下界。

此外,我们有

\lim_{r\rarr\infty}\|A^r\|^{1/r}=\rho(A)


其实,一般用到的为最简单的形式:
,那么
当p取1,2,∞的时候分别是以下几种最简单的情形:
1-范数:║x║1=│x 1│+│x 2│+…+│x n
2-范数:║x║2=(│x 12+│x 22+…+│x n21/2
∞-范数:║x║∞=max(│x 1│,│x 2│,…,│x n│)


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值